Взаимодействие гидроксида алюминия с гидроксидом натрия


Al(OH)3 + NaOH = ? уравнение реакции

В зависимости от того, в каких условиях (в растворе или при сплавлении твердых веществ) протекает реакция между вышеуказанными соединениями Al(OH)3 + NaOH = ? могут образовываться различные продукты. Так, в случае протекания реакции в растворе образуется комплексная соль гексагидроксоалюминат натрия, в случае сплавления же – алюминат натрия и вода. Молекулярное уравнение реакции имеет вид:

   

   

Ионное уравнение можно записать только для реакции взаимодействия веществ в растворе:

   

 
Теперь переходим к решению задачи. Первоначально рассчитаем количество молей веществ, вступивших в реакцию (; ):

   

   

   

Это означает, что гидроксид натрия находится в избытке и дальнейшие расчеты производим по гидроксиду алюминия.
Согласно уравнению реакции

   

значит

   

Тогда масса алюмината натрия будет равна (молярная масса – 82 g/mole):

   

ru.solverbook.com

Реакция алюминия с гидроксидом натрия

Реакция алюминия с гидроксидом натрия может протекать как при сплавлении (), так и в растворе:

   

   

Лабораторная (или паспортная) проба — это конечная промежуточная проба или, другими словами, сокращенная генеральная проба, поступающая в лабораторию для анализа. Состав ее должен быть тождествен среднему составу как всех промежуточных и генеральной проб, так и всей партии опробуемого материала.
По средней лабораторной пробе оценивают качество материала, поэтому к отбору ее предъявляют жесткие требования.
В зависимости от назначения масса лабораторной пробы различна. В среднем она колеблется от 0,5 до 2 кг (по другим данным от 25-30 г до 1 кг). Готовую пробу помещают в два чистых и сухих герметично закрывающихся сосуда (обычно металлические, стеклянные или пластмассовые банки), один из которых направляют
в лабораторию для анализа, а второй хранят у поставщика в течение 1,5-6 мес на случай проверки (контрольная или арбитражная проба). В общем случае срок хранения пробы зависит от цены материала и наличия сухих складских помещений. Хранят пробы до тех пор, пока материал не будет полностью принят потребителем (покупателем). Пробы хранят по видам материала в спецшкафах, устанавливаемых в отапливаемых помещениях, в условиях, исключающих воздействие света, влаги, кислорода и диоксида углерода, которые могут вызвать в пробах изменения.

ru.solverbook.com

Al2(SO4)3 + NaOH = ? уравнение реакции

В результате взаимодействия растворов сульфата алюминия и гидроксида натрия (Al2(SO4)3 + NaOH = ?) происходит образование средней соли – сульфата натрия, а также нерастворимого в воде основания — гидроксида алюминия (обмен). Молекулярное уравнение реакции имеет вид:

   

Запишем ионные уравнения, учитывая, что гидроксид алюминия на ионы не распадается, т.е. не диссоциирует.

   

   

Первое уравнение называют полным ионным, а второе – сокращенным ионным.
Гидроксид алюминия представляет собой термически неустойчивый порошок белого цвета. Не растворяется в воде. Он существует в виде четырех полиморфных модификаций, каждую из которых можно выделить при конкретной температуре.
Гидроксид алюминия выпадает в виде студенистого осадка при действии щелочей на растворы солей алюминия и легко образует коллоидные растворы.

   

Гидроксид алюминия – типичный амфотерный гидроксид. С кислотами он образует соли, содержащие катион алюминия, со щелочами – алюминаты; при взаимодействии с водными растворами щелочей образуются гидроксоалюминаты; при нагревании до температуры выше гидроксид алюминия разлагается.

ru.solverbook.com

Al2O3 + NaOH = ? уравнение реакции

Реакция взаимодействия между оксидом алюминия и гидроксидом натрия (Al2O3 + NaOH = ?) приводит к образованию сложных соединений – алюмината натрия и воды. Молекулярное уравнение реакции имеет вид:

   

Запишем уравнение в ионном виде, однако, следует учесть, что оксиды и вода не диссоциируют, т.е. не распадаются на ионы.

   

   

Первое уравнение называют полным ионным, а второе – сокращенным ионным.
Теперь переходим к решению задачи. Первоначально рассчитаем количество молей веществ, вступивших в реакцию (, ():

   

   

   

Это означает, что гидроксид натрия находится в избытке и дальнейшие расчеты производим по оксиду алюминия.
Согласно уравнению реакции

   

значит

   

Тогда масса алюмината натрия будет равна (молярная масса – 82 g/mole):

   

ru.solverbook.com

Тетрагидроксоалюминат натрия — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 апреля 2018; проверки требуют 10 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 апреля 2018; проверки требуют 10 правок.

Тетрагидроксоалюминат натрия — комплексная соль голубого цвета, имеющая формулу Na[Al(OH)4]. В свободном виде не выделен. Существует при комнатной температуре в концентрированном растворе гидроксида натрия. При нагревании состав аниона усложняется. При кристаллизации удаётся выделить Na4[Al(OH)7], Na6[Al6O4(OH)16] и Na4[Al4O3(OH)10]. Разлагается при разбавлении раствора водой и обработке кислотами. Реагирует с карбонатом аммония и хлоридом алюминия[1].

При 800 С° полностью разлагается на алюминат натрия и воду:

Na[Al(OH)4]→NaAlO2↓+2h3O↑{\displaystyle {\mathsf {Na[Al(OH)_{4}]\rightarrow NaAlO_{2}\downarrow +2H_{2}O\uparrow }}}

При нормальных условиях может поглощать углекислый газ:

Na[Al(OH)4]+CO2→NaHCO3+Al(OH)3↓{\displaystyle {\mathsf {Na[Al(OH)_{4}]+CO_{2}\rightarrow NaHCO_{3}+Al(OH)_{3}\downarrow }}}
2Na[Al(OH)4]+CO2→Na2CO3+2Al(OH)3↓+h3O{\displaystyle {\mathsf {2Na[Al(OH)_{4}]+CO_{2}\rightarrow Na_{2}CO_{3}+2Al(OH)_{3}\downarrow +H_{2}O}}}

Разрушается сильными кислотами:


Na[Al(OH)4]+HCl→NaCl+Al(OH)3↓+h3O{\displaystyle {\mathsf {Na[Al(OH)_{4}]+HCl\rightarrow NaCl+Al(OH)_{3}\downarrow +H_{2}O}}}

Na[Al(OH)4]+4HCl→NaCl+AlCl3+4h3O{\displaystyle {\mathsf {Na[Al(OH)_{4}]+4HCl\rightarrow NaCl+AlCl_{3}+4H_{2}O}}}

Взаимодействие с хлоридом аммония:

Na[Al(OH)4]+Nh5Cl→NaCl+Nh4↑+Al(OH)3↓+h3O{\displaystyle {\mathsf {Na[Al(OH)_{4}]+NH_{4}Cl\rightarrow NaCl+NH_{3}\uparrow +Al(OH)_{3}\downarrow +H_{2}O}}}

Реакция алюминия с гидроксидом натрия и водой:

2Al+2NaOH+6h3O→2Na[Al(OH)4]+3h3↑{\displaystyle {\mathsf {2Al+2NaOH+6H_{2}O\rightarrow 2Na[Al(OH)_{4}]+3H_{2}\uparrow }}}

Смешивание гидроксидов алюминия и натрия:

Al(OH)3+NaOH→Na[Al(OH)4]{\displaystyle {\mathsf {Al(OH)_{3}+NaOH\rightarrow Na[Al(OH)_{4}]}}}

Реакция соли алюминия с избытком щёлочи:

AlCl3+4NaOH→3NaCl+Na[Al(OH)4]{\displaystyle {\mathsf {AlCl_{3}+4NaOH\rightarrow 3NaCl+Na[Al(OH)_{4}]}}}

Взаимодействие оксида алюминия с раствором гидроксида натрия:

Al2O3+2NaOH+3h3O→2Na[Al(OH)4]{\displaystyle {\mathsf {Al_{2}O_{3}+2NaOH+3H_{2}O\rightarrow 2Na[Al(OH)_{4}]}}}

ru.wikipedia.org

Гидроксид алюминия — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 июля 2018; проверки требуют 17 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 июля 2018; проверки требуют 17 правок. Гидроксид алюминия

Гидрокси́д алюми́ния — вещество с формулой Al(OH)3 (а также H3AlO3) — соединение оксида алюминия с водой. Белое студенистое вещество, плохо растворимое в воде, обладает амфотерными свойствами.

Al(OH)3 получают при взаимодействии солей алюминия с водными растворами щёлочи, избегая их избытка:

AlCl3+3NaOH⟶Al(OH)3↓+3NaCl{\displaystyle {\mathsf {AlCl_{3}+3NaOH\longrightarrow Al(OH)_{3}\downarrow +3NaCl}}}

Гидроксид алюминия выпадает в виде белого студенистого осадка.

Второй способ получения гидроксида алюминия — взаимодействие водорастворимых солей алюминия с растворами карбонатов щелочных металлов:

2AlCl3+3Na2CO3+3h3O→2Al(OH)3↓+6NaCl+3CO2{\displaystyle {\mathsf {2AlCl_{3}+3Na_{2}CO_{3}+3H_{2}O\rightarrow 2Al(OH)_{3}\downarrow +6NaCl+3CO_{2}}}}

Гидроксид алюминия представляет собой белое кристаллическое вещество, для которого известны 4 кристаллические модификации:

  • моноклинный (γ) гиббсит
  • триклинный (γ') гиббсит (гидрагилит)
  • байерит (γ)
  • нордстрандит (β)

Существует также аморфный гидроксид алюминия переменного состава Al2O3•nH2O

Свежеосаждённый гидроксид алюминия может взаимодействовать с:

Al(OH)3+3HCl⟶AlCl3+3h3O{\displaystyle {\mathsf {Al(OH)_{3}+3HCl\longrightarrow AlCl_{3}+3H_{2}O}}}
Al(OH)3+3HNO3⟶Al(NO3)3+3h3O{\displaystyle {\ce {Al(OH)3 +3HNO3 -> Al(NO3)3 + 3h3O}}}
В концентрированном растворе гидроксида натрия:
Al(OH)3+NaOH⟶Na[Al(OH)4]{\displaystyle {\mathsf {Al(OH)_{3}+NaOH\longrightarrow Na[Al(OH)_{4}]}}}
При сплавлении твёрдых реагентов:
Al(OH)3+NaOH →1000oC NaAlO2+2h3O{\displaystyle {\mathsf {Al(OH)_{3}+NaOH\ {\xrightarrow {1000^{o}C}}\ NaAlO_{2}+2H_{2}O}}}

При нагревании разлагается:

2Al(OH)3 →t>575oC Al2O3+3h3O{\displaystyle {\mathsf {2Al(OH)_{3}\ {\xrightarrow {t>575^{o}C}}\ Al_{2}O_{3}+3H_{2}O}}}

С растворами аммиака не реагирует.

ЛД50[править | править код]

>5000 мг/кг (крысы, перорально).

Гидроксид алюминия используется при очистке воды, так как обладает способностью адсорбировать различные вещества.
В медицине, в качестве антацидного средства[1], в качестве адъюванта при изготовлении вакцин[2].
В качестве абразивного компонента зубной пасты[3].
В качестве антипирена (подавителя горения) в пластиках и других материалах.
После обработки до окислов применяется в качестве носителя для катализаторов[4].

  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1988. — Т. 1 (Абл-Дар). — 623 с.

ru.wikipedia.org

AlCl3 + NaOH = ? уравнение реакции

Реакция взаимодействия между хлоридом алюминия и гидроксидом натрия (AlCl3 + NaOH = ?) относится к реакциям обмена. Это означает, что образуются два сложных соединения – новая соль и новый гидроксид. Молекулярное уравнение реакции имеет вид:

   

Запишем уравнение в ионном виде, однако, следует учесть, что образующийся гидроксид алюминия является нерастворимым в воде соединением и, как следствие — не диссоциирует, т.е. не распадается на ионы.

   

   

Первое уравнение называют полным ионным, а второе – сокращенным ионным.
Теперь переходим к решению задачи. Первоначально рассчитаем количество молей веществ, вступивших в реакцию (; M(NaOH) = 40 g/mole):

   

 

   

   

Это означает, что гидроксид натрия находится в избытке и дальнейшие расчеты производим по хлориду алюминия.
Согласно уравнению реакции

   

значит

   

Тогда масса гидроксида алюминия будет равна (молярная масса – 78 g/mole):

   

ru.solverbook.com

Гидроксид алюминия, характеристика, свойства и получение, химические реакции

Гидроксид алюминия, характеристика, свойства и получение, химические реакции.

 

 

Гидроксид алюминия – неорганическое вещество, имеет химическую формулу Al(OH)3.

 

Краткая характеристика гидроксида алюминия

Модификации гидроксида алюминия

Физические свойства гидроксида алюминия

Получение гидроксида алюминия

Химические свойства гидроксида алюминия

Химические реакции гидроксида алюминия

Применение и использование гидроксида алюминия

 

Краткая характеристика гидроксида алюминия:

Гидроксид алюминия – неорганическое вещество белого цвета.

Химическая формула гидроксида алюминия Al(OH)3.

Плохо растворяется в воде.

Обладает способностью адсорбировать различные вещества.

 

Модификации гидроксида алюминия:

Известны 4 кристаллические модификации гидроксида алюминия: гиббсит, байерит, дойлеит и нордстрандит.

Гиббсит обозначается γ-формой гидроксида алюминия, а байерит – α-формой гидроксида алюминия.

Гиббсит является наиболее химически стабильной формой гидроксида алюминия.

 

Физические свойства гидроксида алюминия:

Наименование параметра: Значение:
Химическая формула Al(OH)3
Синонимы и названия иностранном языке для гидроксида алюминия α-формы potassium hydroxide (англ.)

aluminum hydroxide α-form (англ.)

байерит (рус.)

Синонимы и названия иностранном языке для гидроксида алюминия γ-формы potassium hydroxide (англ.)

aluminium hydroxide (англ.)

aluminum hydroxide (англ.)

hydrargillite (англ.)

гиббсит (рус.)

гидраргиллит (рус.)

Тип вещества неорганическое
Внешний вид гидроксида алюминия α-формы бесцветные моноклинные кристаллы
Внешний вид гидроксида алюминия γ-формы белый моноклинные кристаллы
Цвет белый, бесцветный
Вкус —*
Запах
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) твердое вещество
Плотность гидроксида алюминия γ-формы (состояние вещества – твердое вещество, при 20 °C), кг/м3 2420
Плотность гидроксида алюминия γ-формы (состояние вещества – твердое вещество, при 20 °C), г/см3 2,42
Температура разложения гидроксида алюминия α-формы, °C 150
Температура разложения гидроксида алюминия γ-формы, °C 180
Молярная масса, г/моль 78,004

* Примечание:

— нет данных.

 

Получение гидроксида алюминия:

Гидроксид алюминия получают в результате следующих химических реакций:

  1. 1. в результате взаимодействия хлорида алюминия и гидроксида натрия:

AlCl3 + 3NaOH → Al(OH)3 + 3NaCl.

При этом гидроксид алюминия выпадает в виде белого студенистого осадка.

Гидроксид алюминия получают также при взаимодействии солей алюминия с водными растворами щёлочи, избегая их избытка.

  1. 2. в результате взаимодействия хлорида алюминия, карбоната натрия и воды:

2AlCl3 + 3Na2CO3 + 3H2O → 2Al(OH)3 + 3CO2 + 6NaCl.

При этом гидроксид алюминия выпадает в виде белого студенистого осадка.

Гидроксид алюминия получают также при взаимодействии водорастворимых солей алюминия с карбонатами щелочных металлов.

 

Химические свойства гидроксида алюминия. Химические реакции гидроксида алюминия:

Гидроксид алюминия обладает амфотерными свойствами, т. е. обладает как основными, так и кислотными свойствами.

Химические свойства гидроксида алюминия аналогичны свойствам гидроксидов других амфотерных металлов. Поэтому для него характерны следующие химические реакции:

1. реакция гидроксида алюминия с гидроксидом натрия:

Al(OH)3 + NaOH → NaAlO2 + 2H2O (t = 1000 °C),

Al(OH)3 + 3NaOH → Na3[Al(OH)6],

Al(OH)3 + NaOH → Na[Al(OH)4].

В результате реакции образуются в первом случае – алюминат натрия и вода, во втором – гексагидроксоалюминат натрия, в третьем – тетрагидроксоалюминат натрия. В третьем случае в качестве гидроксида натрия используется концентрированный раствор.

2. реакция гидроксида алюминия с гидроксидом калия:

Al(OH)3 + KOH → KAlO2 + 2H2O (t = 1000 °C),

Al(OH)3 + KOH → K[Al(OH)4].

В результате реакции образуются в первом случае – алюминат калия и вода, во втором – тетрагидроксоалюминат калия. Во втором случае в качестве гидроксида калия используется концентрированный раствор.

3. реакция гидроксида алюминия с азотной кислотой:

Al(OH)3 + 3HNO3 → Al(NO3)3 + 3H2O.

В результате реакции образуются нитрат алюминия и вода.

Аналогично проходят реакции гидроксида алюминия и с другими кислотами.

4. реакция гидроксида алюминия с фтороводородом:

Al(OH)3 + 3HF → AlF3 + 3H2O,

6HF + Al(OH)3 → H3[AlF6] + 3H2O.

В результате реакции образуются в первом случае – фторид алюминия и вода, во втором – гексафтороалюминат водорода и вода. При этом фтороводород в первом случае в качестве исходного вещества используется в виде раствора.

5. реакция гидроксида алюминия с бромоводородом:

Al(OH)3 + 3HBr → AlBr3 + 3H2O.

В результате реакции образуются бромид алюминия и вода.

6. реакция гидроксида алюминия с йодоводородом:

Al(OH)3 + 3HI → AlI3 + 3H2O.

В результате реакции образуются йодид алюминия и вода.

7. реакция термического разложения гидроксида алюминия:

Al(OH)3 → AlO(OH) + H2O (t = 200 °C),

2Al(OH)3 → Al2O3 + 3H2O (t = 575 °C).

В результате реакции образуются в первом случае – метагидроксид алюминия и вода, во втором – оксид алюминия и вода.

8. реакция гидроксида алюминия и карбоната натрия:

2Al(OH)3 + Na2CO3 → 2NaAlO2 + CO2 + 3H2O.

В результате реакции образуются алюминат натрия, оксид углерода (IV) и вода.

10. реакция гидроксида алюминия и гидроксида кальция:

Ca(OH)2 + 2Al(OH)3 → Ca[Al(OH)4]2.

В результате реакции образуется тетрагидроксоалюмината кальция.

 

Применение и использование гидроксида алюминия:

Гидроксид алюминия используется при очистке воды (как адсорбирующее вещество), в медицине, в качестве наполнителя в зубной пасте (как абразивное вещество), пластиках и пластмассах (как антипирен).

 

Примечание: © Фото //www.pexels.com, //pixabay.com

 

карта сайта

гидроксид алюминия реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения реакции масса взаимодействие гидроксида

 

Коэффициент востребованности 2 553

xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

Основания. Химические свойства и получение

Перед изучением этого раздела рекомендую прочитать следующую статью:

Классификация неорганических веществ

Основания – сложные вещества, которые состоят из катиона металла Ме+ (или металлоподобного катиона, например, иона аммония NH4+) и гидроксид-аниона ОН.

По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания. Также есть неустойчивые основания, которые самопроизвольно разлагаются.

1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:

основный оксид + вода = основание

Например, оксид натрия в воде образует гидроксид натрия (едкий натр):

Na2O + H2O → 2NaOH

При этом оксид меди (II)  с водой не реагирует:

CuO + H2O ≠

2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий), кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.

металл + вода = щёлочь + водород

Например, калий реагирует с водой очень бурно:

2K0 + 2H2+O →  2K+OH + H20

 

3. Электролиз растворов некоторых солей щелочных металлов. Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например, электролиз хлорида натрия:

2NaCl + 2H2O → 2NaOH + H2↑ + Cl2

4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:

щелочь + соль1 = соль2↓ + щелочь

либо

щелочь + соль1 = соль2↓ + щелочь

Например: карбонат калия реагирует в растворе с гидроксидом кальция:

K2CO3 + Ca(OH)2 → CaCO3↓ + 2KOH

Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II):

CuCl2 + 2NaOH → Cu(OH)2↓ + 2NaCl

 

1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами  (и некоторыми средними кислотами). При этом образуются соль и вода.

нерастворимое основание + кислота = соль + вода

нерастворимое основание + кислотный оксид = соль + вода

Например, гидроксид меди (II) взаимодействует с сильной соляной кислотой:

 Cu(OH)2 + 2HCl = CuCl2 + 2H2O

При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:

Cu(OH)2 + CO2

2. Нерастворимые основания разлагаются при нагревании на оксид и воду.

Например, гидроксид железа (III) разлагается на оксид железа (III)  и воду при прокаливании:

2Fe(OH)3 = Fe2O3 + 3H2O

3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.

нерастворимое оснвоание + амфотерный оксид  ≠

нерастворимое основание + амфотерный гидроксид  ≠

4. Некоторые нерастворимые основания могут выступать в качестве восстановителей. Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления, которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).

Например, гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):

4Fe+2(OH)2 + O20 + 2H2O → 4Fe+3(O-2H)3

1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми. При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации. Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Например, гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при  мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH + H3PO4  → NaH2PO4 + H2O

При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:

2NaOH + H3PO4 → Na2HPO4 + 2H2O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH + H3PO4 → Na3PO4 + 3H2O

2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли, а в растворе – комплексные соли.

щёлочь (расплав) + амфотерный оксид = средняя соль + вода

щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода

щёлочь (раствор) + амфотерный оксид = комплексная соль

щёлочь (раствор) + амфотерный гидроксид = комплексная соль

Например, при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:

NaOH + Al(OH)3 = NaAlO2 + 2H2O

А в растворе образуется комплексная соль:

NaOH + Al(OH)3 = Na[Al(OH)4]

Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (как правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.

3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли, в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:

щёлочь(избыток) + кислотный оксид = средняя соль + вода

либо:

щёлочь + кислотный оксид(избыток) = кислая соль

Например, при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:

2NaOH + CO2 = Na2CO3 + H2O

А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:

2NaOH + CO2 = NaHCO3 

4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе, при условии, что в продуктах образуется газ или  осадок. Такие реакции протекают по механизму ионного обмена.

щёлочь + растворимая соль = соль + соответствующий гидроксид

Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.

Например, гидроксид натрия взаимодействует с сульфатом меди в растворе:

Cu2+SO42- + 2Na+OH = Cu2+(OH)2↓ + Na2+SO42-

Также щёлочи взаимодействуют с растворами солей аммония.

Например, гидроксид калия взаимодействует с раствором нитрата аммония:

NH4+NO3 + K+OH = K+NO3 + NH3↑ + H2O

! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль !

Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид, взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла.

Например, избыток сульфата цинка реагирует в растворе с гидроксидом калия:

ZnSO4 + 2KOH = Zn(OH)2↓ + K2SO4

Однако, в данной реакции образуется не основание, а амфотерный гидроксид. А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей. Таким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:

ZnSO4 + 4KOH = K2[Zn(OH)4] + K2SO4

Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:

соль амф.металла(избыток) + щёлочь = амфотерный гидроксид↓ + соль

соль амф.металла + щёлочь(избыток) = комплексная соль + соль

5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.

кислая соль + щёлочь = средняя соль + вода

Например, гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:

KHSO3 + KOH = K2SO3 + H2O

Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO3 мы разбиваем на уольную кислоту H2CO3 и карбонат натрия Na2CO3. Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.

6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород, в расплаве — средняя соль и водород.

! Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например, железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6H2+O = 2Na[Al+3(OH)4] + 3H20

7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах. Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О2 ≠

NaOH +N2 ≠

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например, хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH +Cl20 = NaCl + NaOCl+ + H2O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH +Cl20 = 5NaCl + NaCl+5O3 + 3H2O

Кремний окисляется щелочами до степени окисления +4.

Например, в растворе:

2NaOH +Si0 + H2+O= NaCl + Na2Si+4O3 + 2H20

Фтор окисляет щёлочи:

2F20 + 4NaO-2H = O20 + 4NaF + 2H2O

Более подробно про эти реакции можно прочитать в статье Окислительно-восстановительные реакции.

8. Щёлочи не разлагаются при нагревании.

Исключение — гидроксид лития:

2LiOH = Li2O + H2O

 

Поделиться ссылкой:

chemege.ru


Смотрите также

Серозометра: Лечение Народными Средствами

Серозометра: причины возникновения, симптомы и лечение Патологическое скопление в полости матки жидкости — серозометра, довольно серьезный симптом. Промедление… Подробнее...
Палец

Щелкающий Палец: Лечение Народными Средствами

Какие существуют способы избавления от щелкающих суставов Когда палец (или даже несколько) заклинивает во время сгибания или раздается непривычное щелканье, то… Подробнее...
Простатит

Затрудненное Мочеиспускание У Мужчин: Лечение Народными Средствами

Из-за чего возникает затрудненное мочеиспускание у мужчин Проблемы с мочеиспусканием у мужчин встречаются достаточно часто, причем даже в молодом возрасте, но… Подробнее...