Структурная формула формальдегида


Формальдегид - что это? Класс опасности, формула, химические свойства

Закрыть
  • Болезни
    • Инфекционные и паразитарные болезни
    • Новообразования
    • Болезни крови и кроветворных органов
    • Болезни эндокринной системы
    • Психические расстройства
    • Болезни нервной системы
    • Болезни глаза
    • Болезни уха
    • Болезни системы кровообращения
    • Болезни органов дыхания
    • Болезни органов пищеварения
    • Болезни кожи
    • Болезни костно-мышечной системы
    • Болезни мочеполовой системы
    • Беременность и роды
    • Болезни плода и новорожденного
    • Врожденные аномалии (пороки развития)
    • Травмы и отравления
  • Симптомы
    • Системы кровообращения и дыхания
    • Система пищеварения и брюшная полость
    • Кожа и подкожная клетчатка
    • Нервная и костно-мышечная системы
    • Мочевая система
    • Восприятие и поведение
    • Речь и голос
    • Общие симптомы и признаки
    • Отклонения от нормы
  • Диеты
    • Снижение веса
    • Лечебные
    • Быстрые
    • Для красоты и здоровья
    • Разгрузочные дни
    • От профессионалов
    • Монодиеты
    • Звездные
    • На кашах
    • Овощные
    • Детокс-диеты
    • Фруктовые
    • Модные
    • Для мужчин
    • Набор веса
    • Вегетарианство
    • Национальные
  • Лекарства
    • Антибиотики
    • Антисептики
    • Биологически активные добавки
    • Витамины
    • Гинекологические
    • Гормональные
    • Дерматологические
    • Диабетические
    • Для глаз
    • Для крови
    • Для нервной системы
    • Для печени
    • Для повышения потенции
    • Для полости рта
    • Для похудения
    • Для суставов
    • Для ушей
    • Желудочно-кишечные
    • Кардиологические
    • Контрацептивы
    • Мочегонные
    • Обезболивающие
    • От аллергии
    • От кашля
    • От насморка
    • Повышение иммунитета
    • Противовирусные
    • Противогрибковые
    • Противомикробные
    • Противоопухолевые
    • Противопаразитарные
    • Противопростудные
    • Сердечно-сосудистые
    • Урологические
    • Другие лекарства
    ДЕЙСТВУЮЩИЕ ВЕЩЕСТВА
  • Врачи
  • Клиники
  • Справочник
    • Аллергология
    • Анализы и диагностика
    • Беременность
    • Витамины
    • Вредные привычки
    • Геронтология (Старение)
    • Дерматология
    • Дети
    • Женское здоровье
    • Инфекция
    • Контрацепция
    • Косметология
    • Народная медицина
    • Обзоры заболеваний
    • Обзоры лекарств
    • Ортопедия и травматология
    • Питание
    • Пластическая хирургия
    • Процедуры и операции
    • Психология
    • Роды и послеродовый период
    • Сексология
    • Стоматология
    • Травы и продукты
    • Трихология
    • Другие статьи
  • Словарь терминов
    • [А] Абазия .. Ацидоз
    • [Б] Базофилы .. Богатая тромбоцитами плазма
    • [В] Вазопрессин .. Выкидыш
    • [Г] Галлюциногены .. Грязи лечебные
    • [Д] Деацетилазы гистонов .. Дофамин
    • [Ж] Железы .. Жиры
    • [И] Иммунитет .. Искусственная кома
    • [К] Каверна .. Кумарин
    • [Л] Лапароскоп .. Лучевая терапия
    • [М] Макрофаги .. Мутация
    • [Н] Наркоз .. Нистагм
    • [О] Онкоген .. Отек
    • [П] Паллиативная помощь .. Пульс
    • [Р] Реабилитация .. Родинка (невус)
    • [С] Секретин .. Сыворотка крови
    • [Т] Таламус .. Тучные клетки
    • [У] Урсоловая кислота
    • [Ф] Фагоциты .. Фитотерапия
    • [Х] Химиотерапия .. Хоспис
    • [Ц] Цветовой п

Альдегиды — Википедия

Общая структурная формула альдегидов

Альдеги́ды (от лат. alcohol dehydrogenatus — спирт, лишённый водорода) — класс органических соединений, содержащих альдегидную группу (-CHO)[1]. ИЮПАК определяет альдегиды как вещества вида R-CHO, в которых карбонильная группа связана с одним атомом водорода и одной группой R[2].

Этимология[править | править код]

Слово альдегид было придумано Юстусом фон Либихом как сокращение латинского alcohol dehydrogenatus — дегидрированный спирт[3] (в некоторых источниках — alcohol dehydrogenatum[1]). Название радикала формил, а также другие однокоренные слова (формальдегид, формиаты), произошли от лат. formica — муравей[источник не указан 2443 дня].

Тривиальные названия[править | править код]

В популярной и научной литературе можно нередко встретить исторические, или тривиальные, названия альдегидов, которые вследствие сложившейся традиции используются вместо систематических названий. Тривиальные названия обычно происходят от названия соответствующих карбоновых кислот, а также от названия источника, из которого был выделен тот или иной альдегид. Так, например, формальдегид называют муравьиным альдегидом, этаналь — уксусным, пентаналь — валериановым альдегидом, цитронеллаль получил своё название, поскольку был выделен из масла цитрусовых.

Исторически сложилось, что парфюмеры называют многие пахучие вещества альдегидами, даже те, которые не имеют ничего общего с ними. Среди таковых, например, персиковый, земляничный и кокосовый альдегид, которые являются не альдегидами, а сложными эфирами или лактонами. Также некоторые альдегиды традиционно называются по числу атомов углерода, например, персиковый альдегид, обозначаемый как «альдегид C14», на самом деле имеет лишь 11 атомов углерода[4].

Систематическая номенклатура[править | править код]

По номенклатуре ИЮПАК названия простых альдегидов образуются от названий соответствующих алканов с добавлением суффикса - аль, а диальдегидов — суффикса -диаль (в данном случае атом углерода альдегидной группы уже входит в состав родоначального алкана). При этом в названии номер при альдегидной группе, как правило, не ставят, поскольку она всегда занимает крайнее положение. Если карбонильная группа не входит в родоначальную структуру (например, если родоначальной структурой является циклический углеводород или гетероцикл), то к названию добавляется суффикс -карбальдегид[5][6].

Если в данном соединении альдегидная группа не является старшей, то в таких случаях её обозначают используя приставку формил-, указывая её положение[6].

В устаревших Женевской (1892) и Льежской (1930) номенклатурах, впоследствии заменённых систематической номенклатурой ИЮПАК, альдегиды обозначались при помощи суффикса -ал[7].

Альдегиды классифицируются следующим образом (в скобках приведены примеры)[8]:

  • В зависимости от насыщенности углеводородного заместителя:
  • По числу карбонильных групп:
Структурная формула ретиналя

Альдегидная группа содержится во многих природных веществах, таких, как углеводы (альдозы), некоторые витамины (ретиналь, пиридоксаль). Их следы содержатся в эфирных маслах и часто способствуют их приятному запаху, например, коричный альдегид (в кассиевом масле его может быть до 75 %, а в цейлонском коричном масле даже до 90 %) и ванилин.

Алифатический альдегид СН3(СН2)7С(Н)=О (тривиальное название — пеларгоновый альдегид) содержится в эфирных маслах цитрусовых растений, обладает запахом апельсина, его используют как пищевой ароматизатор[9].

Цитраль содержится в лемонграссовом и кориандровом маслах (до 80 %), цитронеллаль — в цитронелловом (приблизительно 30 %) и эвкалиптовом, бензальдегид — в масле горького миндаля. Куминовый альдегид содержится в масле тмина, гелиотропин — в масле гелитропа и сирени, анисовый альдегид и жасминальдегид в небольших количествах содержатся во многих эфирных маслах.[1][4].

Лабораторные методы получения альдегидов[править | править код]

Окислительные методы[править | править код]
  • Для получения альдегидов в лабораторных условиях часто используется реакция окисления первичных спиртов реагентами, представляющими собой комплексные соединения оксида хрома(VI) с третичными аминами, в частности, лучшими реагентами являются комплекс с пиридином (CrO3 · 2C5H5N, реагент Саррета — Коллинза) и хлорхромат пиридиния (C5H5NH+CrO3Cl-, реагент Кори, PCC). Данные реагенты позволяют получать альдегиды с высоким выходом, а хлорхромат пиридиния также не затрагивает двойную связь. Для этих же целей применяют и другие селективные окислители, например оксид марганца(IV) MnO2, карбонат серебра на цеолите, а также диметилсульфоксид в присутствии основания (окисление по Сверну[en])[10].
Периодинан Десса-Мартина
  • Реакция окисления периодинаном Десса-Мартина. Первичные спирты при этом селективно окисляются до альдегидов.[11]

R−Ch3OH→DMPR−CHO{\displaystyle {\mathsf {R{-}CH_{2}OH{\xrightarrow[{DMP}]{}}R{-}CHO}}}

  • Как метод получения альдегидов может использоваться восстановительный озонолиз симметричных дизамещённых алкенов либо циклических алкенов (в данном случае реакция приводит к образованию диальдегида). Аналогичное превращение может быть проведено под действием смеси OsO4 и NaIO4[12].

Ch3(OH)−Ch3(OH)→HIO42Ch3O{\displaystyle {\mathsf {CH_{2}(OH){-}CH_{2}(OH){\xrightarrow[{HIO_{4}}]{}}2CH_{2}O}}}

Восстановительные методы[править | править код]

Ряд производных карбоновых кислот (хлорангидриды, сложные эфиры, нитрилы, амиды) могут быть восстановлены до альдегидов под действием специфических восстановителей[15].

Синтез ароматических альдегидов[править | править код]

Ароматические альдегиды могут быть синтезированы принципиально отличными методами, основанными на реакциях ароматического электрофильного замещения.

  • Ароматические альдегиды можно получать из производных ароматических карбоновых кислот общими методами, однако существуют и специфические реакции. Например, реакция Стефена позволяет восстанавливать ароматические нитрилы хлоридом олова(II) SnCl2 с последующим гидролизом, что приводит к ароматическому альдегиду[19].
Другие методы[править | править код]

Альдегиды также можно получать реакциями гидратации алкинов (реакция Кучерова), пиролизом карбоновых кислот и их смесей в виде паров над оксидами некоторых металлов (ThO2, MnO2, CaO, ZnO) при 400—500 °C, гидролизом геминальных дигалогенопроизводных (если атомы галогена находятся у одного из крайних атомов углерода) и другими реакциями[8].

Промышленные методы получения альдегидов[править | править код]

Известно много методов синтеза альдегидов, однако их использование в промышленности зависит во многом от доступности исходного сырья. Основными промышленными методами получения насыщенных алифатических альдегидов являются[20]:

Также большое значение имеют некоторые специфические синтезы альдегидов, широко применяемых в парфюмерной промышленности[20].

Оксосинтез является наиболее важным процессом для получения альдегидов с тремя атомами углерода и выше. В этой реакции алкены реагируют с синтез-газом (CO + H2) с образованием альдегида, содержащего на один атом углерода больше, чем исходный алкен. При использовании несимметричных алкенов образуется смесь продуктов, соотношение которых можно варьировать путём подбора катализатора[20].

Среди процессов отщепления водорода от первичных спиртов различают дегидрирование, окисление и окислительное дегидрирование. Дегидрирование спиртов проводят при атмосферном давлении и температуре 250—400 °С в присутствии медного или серебряного катализатора. В ходе процесса выделяется водород, который можно использовать без очистки в других процессах. Дегидрирование имеет коммерческое значение в получении уксусного альдегида из этанола: реакцию проводят при 270—300 °С на медном катализаторе, активированном церием, при этом за цикл превращается 25—50 % этанола с селективностью 90—95 %. Побочными продуктами являются этилацетат, этилен, кротоновый альдегид и высшие спирты. Окисление спиртов проводится в избытке воздуха или кислорода при 350—450 °С на катализаторе, содержащем оксиды железа и молибдена. Процесс используется в производстве формальдегида. Данные процессы также применяются в синтезе душистых альдегидов[20].

Окисление алкенов является основным промышленным методом получения ацетальдегида и акролеина. В первом случае окислению подвергается этилен в присутствии хлоридов палладия и меди Вакер-процесс [20][8].

Ch3=Ch3+PdCl2+h3O→Ch4CHO+Pd+2HCl{\displaystyle {\mathsf {CH_{2}{\text{=}}CH_{2}+PdCl_{2}+H_{2}O\rightarrow CH_{3}CHO+Pd+2HCl}}}
Pd+2CuCl2→PdCl2+2CuCl{\displaystyle {\mathsf {Pd+2CuCl_{2}\rightarrow PdCl_{2}+2CuCl}}}
4CuCl+4HCl+O2→4CuCl2+2h3O{\displaystyle {\mathsf {4CuCl+4HCl+O_{2}\rightarrow 4CuCl_{2}+2H_{2}O}}}

Процесс получения ацетальдегида, основанный на гидратации ацетилена, в последнее время потерял былое значение. Последние фабрики в Западной Европе, синтезирующие ацетальдегид по данной схеме, были закрыты в 1980 году. Причиной этому послужила бо́льшая доступность этилена в качестве сырья, а также токсичность катализатора — сульфата ртути[20].

Ежегодное мировое производство формальдегида (по данным на 1996 год) составило 8,7·106 т[21], ацетальдегида (на 2003 год) — 1,3·106 т[22].

Основным методом получения бензальдегида является гидролиз бензальхлорида в кислой или щелочной средах. В качестве гидролизующих агентов могут применяться гидроксид кальция, карбонат кальция, гидрокарбонат натрия, карбонат натрия, а также различные кислоты с добавлением солей металлов. Исходное сырьё, в свою очередь, получают при хлорировании толуола в боковую цепь. Менее распространённый процесс основан на частичном окислении толуола[23].

Формальдегид представляет собой газообразное при комнатной температуре вещество. Альдегиды до С12 — жидкости, а альдегиды нормального строения с более длинным неразветвлённым углеродным скелетом, являются твёрдыми веществами.

Температуры кипения альдегидов с неразветвлённым строением углеродной цепи выше, чем у их изомеров. Например, валериановый альдегид кипит при 100,4 °C, а изовалериановый — при 92,5 °C. Они кипят при более низких температурах, чем спирты с тем же числом углеродных атомов, например, пропионовый альдегид кипит при 48,8 °C, а пропанол-1 при 97,8 °C. Это показывает, что альдегиды, в отличие от спиртов, не являются сильно ассоциированными жидкостями[8]. Данное свойство используется в синтезе альдегидов путём восстановления спиртов: поскольку температура кипения альдегидов в целом ниже, они могут быть легко отделены и очищены от спирта перегонкой[24]. В то же время их температуры кипения намного выше, чем у углеводородов с той же молекулярной массой, что связано с их высокой полярностью[8].

Вязкость, плотность и показатель преломления при 20 °C увеличиваются с увеличением молярной массы альдегидов. Низшие альдегиды являются подвижными жидкостями, а альдегиды от гептаналя до ундеканаля имеют маслообразную консистенцию[24].

Формальдегид и ацетальдегид практически неограниченно смешиваются с водой, однако, с ростом длины углеродного скелета, растворимость альдегидов в воде сильно уменьшается, например, растворимость гексаналя при 20 °С составляет лишь 0,6 % по массе. Алифатические альдегиды растворимы в спиртах, простых эфирах и других распространённых органических растворителях[24].

Низшие альдегиды имеют резкий запах, а высшие гомологи (С813) являются компонентами многих парфюмерных изделий[24].

Физические свойства некоторых альдегидов[25][26]
Название Формула Температура плавления, °C Температура кипения, °C Плотность, г/см³ (при 20 °C)
Формальдегид HCHO −93 −21 0,82 (при –20 °С)
Ацетальдегид CH3CHO −123 21 0,778
Пропаналь CH3CH2CHO −81 49 0,797
Бутаналь CH3CH2CH2CHO −99 76 0,803
Акролеин CH2=CH–CHO −88 53 0,841
Кротоновый альдегид CH3-CH=CH–CHO −74 104 0,852
Бензальдегид C6H5CHO −56 179 1,05
Салициловый альдегид о-HO–C6H4CHO 2 197 1,16
Ванилин

82 285

Атом углерода в карбонильной группе находится в состоянии sp2-гибридизации. Углы R-C-H, R-C-O и H-C-O составляют приблизительно 120° (где R — алкил).

Двойная связь карбонильной группы сходна по физической природе с двойной связью между углеродными атомами, однако в то же время энергия связи С=О (749,4 кДж/моль) больше, чем энергия двух простых связей (2×358 кДж/моль) C-O. С другой стороны, кислород является более электроотрицательным элементом, чем углерод, и потому электронная плотность вблизи атома кислорода больше, чем вблизи атома углерода. Дипольный момент карбонильной группы составляет ~9⋅10−30 Кл·м[8]. Длина связи С=О составляет 0,122 нм[13].

Поляризация двойной связи «углерод-кислород» по принципу мезомерного сопряжения позволяет записать следующие резонансные структуры:

Подобное разделение зарядов подтверждается физическими методами исследования и во многом определяет реакционную способность альдегидов как выраженных электрофилов и позволяет им вступать в многочисленные реакции нуклеофильного присоединения[27].

Высокая реакционная способность связана с наличием полярной связи С=О. Альдегиды являются жёсткими основаниями Льюиса и, в соответствии с этим, атом кислорода в них может координироваться с жёсткими кислотами: H+, ZnCl2, BF3, AlCl3 и т. д.[13] В общем случае химические свойства альдегидов аналогичны кетонам, однако альдегиды проявляют бо́льшую активность, что связано с большей поляризацией связи. Кроме того, для альдегидов характерны реакции, не характерные для кетонов, например гидратация в водном растворе.

Реакции присоединения к карбонильной группе[править | править код]

Альдегиды содержат поляризованную карбонильную группу и склонны присоединять нуклеофильные реагенты, как нейтральные (аммиак, амины, воду, спирты, тиолы и др.), так и анионные (цианид-ион CN-, алкоголяты, гидрид-ион H-, карбанионы и др.). За исключением реакций восстановления гидридами типа алюмогидрида лития LiAlH4, а также взаимодействия с реактивами Гриньяра, данные процессы являются обратимыми. Необходимо также различать два типа обратимых реакций присоединения: первый тип приводит к образованию тетраэдрического продукта присоединения, а второй тип включает в себя также последующую реакцию дегидратации, в результате которой происходит образование двойной связи между электрофильным атомом углерода и нуклеофилом. Реакции второго типа характерны, в основном, для азотсодержащих нуклеофилов[28].

В данных реакциях альдегиды являются более реакционноспособными по сравнению с кетонами. Это связано с большей термодинамической устойчивостью кетонов, а также меньшими пространственными затруднениями в случае присоединения к альдегидам[28].

Простейшей модельной реакцией данного типа является реакция гидратации альдегидов, протекающая в их водных растворах. Согласно правилу Эльтекова — Эрленмейера, образующиеся при этом 1,1-диолы неустойчивы и с отщеплением молекулы воды превращаются обратно в исходные карбонильные соединения. Гидратация наблюдается в существенной степени лишь для низших альдегидов. Так, формальдегид гидратирован на 99,999 %, ацетальдегид — на 58 %. Когда положительный заряд на атоме углерода увеличивается в достаточной степени за счёт связанных с ним радикалов, 1,1-диолы становятся устойчивыми и могут быть выделены (например, хлораль легко присоединяет воду с образованием устойчивого аддукта — хлоральгидрата). Реакция гидратации катализируется как кислотами, так и основаниями[13][29].

Подобным образом протекает и реакция присоединения спиртов по карбонильной группе, имеющая важное значение в органическом синтезе для защиты карбонильной группы. Первичный продукт присоединения называется полуацеталем, далее под действием кислоты он превращается в ацеталь. При стоянии альдегиды также образуют циклические или полимерные ацетали (например, триоксан или параформ для формальдегида и паральдегид для ацетальдегида). При нагревании этих соединений со следовыми количествами кислот происходит деполимеризация и регенерация исходных альдегидов[30].

Аналогичные превращения происходят также с участием серосодержащих аналогов спиртов — тиолов; они приводят, соответственно, к тиоацеталям, также играющим важную роль в тонком органическом синтезе[30].

Альдегиды могут присоединять циановодород HCN с образованием циангидринов, применяемых в органическом синтезе для получения α,β-ненасыщенных соединений, α-гидроксикислот, α-аминокислот. Данная реакция также является обратимой и катализируется основаниями. В лабораторных условиях циановодород (т. кип. 26 °C) обычно получают действием эквивалентного количества минеральной кислоты на цианид натрия или калия[31].

Относительно небольшие пространственные затруднения при присоединении нуклеофилов к альдегидам позволяют превращать их в бисульфитные производные под действием большого избытка гидросульфита натрия NaHSO3. Данные соединения представляют собой кристаллические вещества и часто используются для выделения, очистки или хранения соответствующих альдегидов, поскольку последние могут быть легко из них регенерированы под действием кислоты или основания[31].

Реакция альдегидов с магний- и литийорганическими соединениями приводит к образованию вторичных спиртов (в случае формальдегида — первичных). Процесс может осложняться побочными реакциями енолизации и восстановления карбонильного соединения, которые приводят к снижению выхода. При использовании литийорганических соединений эти помехи удаётся устранить[32].

При реакции альдегидов с первичными и вторичными аминами происходит образование иминов и енаминов соответственно. В основе обеих реакций лежит присоединение нуклеофильных реагентов по карбонильной группе с последующим отщеплением воды от полученного тетраэдрического интермедиата. Реакция образования иминов требует кислотного катализа и наиболее эффективно протекает в области pH от 3 до 5. Для получения енаминов с удовлетворительным выходом необходимо применять азеотропную отгонку воды, что позволяет сместить равновесие в сторону образования продукта. Обычно в качестве вторичных аминов используют циклические амины (пирролидин, пиперидин или морфолин)[33].

Аналогичным образом альдегиды реагируют с гидроксиламином, гидразином, 2,4-динитрофенилгидразином, семикарбазидом и другими подобными соединениями. Большинство получаемых при этом соединений являются кристаллическими и могут быть использованы для идентификации альдегидов по температуре плавления и другим характеристикам. Также эти соединения находят применение в органическом синтезе, например, гидразоны могут быть восстановлены по реакции Кижнера — Вольфа[33].

Реакции сопряжённого присоединения[править | править код]

Присоединение к α,β-ненасыщенным альдегидам может протекать с образованием 1,2- и 1,4-продуктов

Присоединение нуклеофильных реагентов к α,β-ненасыщенным альдегидам может протекать как по карбонильной группе, так и по «четвёртому» положению сопряжённой системы. Причина этого заключается в том, что двойная углерод-углеродная связь поляризуется под действием полярной карбонильной группы (мезомерный эффект), и дальний от карбонильной группы атом углерода двойной связи приобретает частичный положительный заряд. Реакция нуклеофила с данным атомом углерода называется сопряжённым присоединением, или 1,4-присоединением. Присоединение к карбонильной группе по аналогии называют 1,2-присоединением. Формальным результатом 1,4-присоединения является присоединение нуклеофила по углерод-углеродной двойной связи. Во многих случаях 1,2- и 1,4-присоединение являются конкурирующими реакциями, однако иногда удаётся проводить селективные реакции с получением продуктов 1,2- либо 1,4-присоединения[34].

Присоединение первичных и вторичных аминов к α,β-ненасыщенным альдегидам протекает в мягких условиях и приводит к образованию 1,4-продукта. Напротив, в случае циановодорода наблюдается конкурентное образование обоих продуктов с преобладанием продукта 1,2-присоединения. Чтобы в данной реакции исключить возможность 1,2-присоединения, используют специальный реагент — диэтилалюминийцианид (C2H5)2AlCN[35].

Литийорганические соединения присоединяются исключительно по карбонильной группе, давая аллиловые спирты. Сопряжённое присоединение проводят под действием медьорганических реагентов — диалкилкупратов, которые позволяют ввести в карбонильное соединение не только первичную, но также вторичную или третичную алкильную, алкенильную или ари

Формула Формальдегида структурная химическая

Структурная формула

Истинная, эмпирическая, или брутто-формула: CH2O

Химический состав Формальдегида

Символ Элемент Атомный вес Число атомов Процент массы
C Углерод 12,011 1 40%
Na Натрий 22,99 2 6,7%
O Кислород 15,999 1 53,3%

Молекулярная масса: 30,026

Формальдегид (от лат. formīca «муравей») — бесцветный газ с резким запахом, хорошо растворимый в воде, спиртах и полярных растворителях. Ирритант, токсичен. Формальдегид — первый член гомологического ряда алифатических альдегидов, альдегид метанола и муравьиной кислоты.

Физические свойства

Величина Значение
Ст. энергия Гиббса образования ΔG −110 кДж/моль (г)
Ст. энтропия образования S 218,66 Дж/моль·K (г)
Ст. мольная теплоёмкость Cp 35,35 Дж/моль·K (г)
Энтальпия кипения ΔHкип 23,3 кДж/моль

Химические свойства

Из-за низкой электронной плотности на атоме углерода формальдегид легко вступает в реакции даже со слабыми нуклеофилами. Этим, в частности, объясняется тот факт, что в водных растворах формальдегид находится в гидратированной форме. Формальдегид вступает во все реакции, характерные для алифатических альдегидов. В частности, в реакции с нуклеофилами и восстановительными реагентами. Окисление формальдегида различными реагентами: 5HCHO + 4KMnO4 + 6H2SO4 → 4MnSO4 + 2K2SO4 + 5CO2 + 11H2O HCHO + 4Cu(OH)2 → CO2 + 2Cu2O + 5H2O HCHO + 4[Ag(NH3)2]OH → (NH4)2CO3 + 4Ag + 6NH3 + 2H2O Реакция с фенолом с образованием фенолформальдегидных смол: HCHO + 2C6H5OH → HOC6H4CH2C6H4OH + H2O

Получение

Основной промышленный метод получения формальдегида — окисление метанола: 2CH3OH + O2 → 2HCHO + 2H2O Окисление метанола в формальдегид проводится с использованием серебряного катализатора при температуре 650 °C и атмосферном давлении. Это хорошо освоенный технологический процесс, и 80 % формальдегида получается именно по этому методу. Недавно разработан более перспективный способ, основанный на использовании железо-молибденовых катализаторов. При этом реакция проводится при 300 °C. В обоих процессах степень превращения составляет 99 %. Процесс дегидрирования метанола, осуществлённый на цинк-медных катализаторах при 600 °C, пока не получил широкого развития, однако он является очень перспективным, поскольку позволяет получать формальдегид, не содержащий воды. Существует также промышленный способ получения формальдегида окислением метана: Ch5 + O2 → HCHO + H2O Процесс проводят при температуре 450 °C и давлении 1—2 МПа, в качестве катализатора применяется фосфат алюминия AlPO4.

Применение

Водный раствор формальдегида (метандиол), стабилизированный метанолом, — формалин — вызывает денатурацию белков, поэтому он применяется в качестве дубителя в кожевенном производстве и дубления желатина при производстве кинофотоплёнки. Из-за сильного дубящего эффекта формальдегид является также сильным антисептиком, это свойство формалина используется в медицине (формидрон, Формагель и подобные препараты) и для консервации биологических материалов (создание анатомических и других препаратов). Формальдегид применяется в качестве средства фумигации, в частности при хранении и транспортировке зерна. Водный раствор формальдегида (метандиол), стабилизированный карбамидом, — КФК — является одним из важнейших источников формальдегида и карбамида в производстве карбамидоформальдегидных, меламинокарбамидоформальдегидных смол и для обработки карбамида против слеживаемости; применяется в деревообрабатывающей и мебельной промышленности для производства фанеры, ДСП и т. д. Основная часть формальдегида идёт на изготовление полимеров-реактопластов (фенолформальдегидные, карбамидформальдегидные и меламинформальдегидные смолы), он широко используется также в промышленном органическом синтезе (пентаэритрит, триметилолпропан и т. д.). При хранении (при температуре ниже 9 °С) раствор формальдегида мутнеет, выпадает белый осадок (параформальдегид). В пищевой промышленности зарегистрирован под кодом E240.

Использование формальдегида в составе косметических средств

Директивой 76/768 ЕЭС допускается применение формальдегида в качестве консерванта в количестве до 0,1 % в составе косметических средств, предназначенных для гигиены полости рта, и до 0,2 % в прочих косметических препаратах. В фармакологии препараты, содержащие до 0,5 % формальдегида, применяются для снижения потливости без каких-либо ограничений, и только при применении мази, содержащей 5 % этого вещества, рекомендуется не наносить её на кожу лица. Запрещается применять для консервации средств в аэрозольной упаковке, спреев. Продукция должна иметь предупреждение «содержит формальдегид», если содержание формальдегида в готовой продукции превышает 0,05 %. С точки зрения спектра противомикробной активности, формальдегид проявляет активность в отношении грамположительных, грамотрицательных бактерий, дрожжеподобных и плесневых грибов. В то же время формальдегид и парабены снижают противомикробные свойства в присутствии белков.[5] Наряду с этим установлено улучшение физико-механических свойств волоса после обработки его формалином. Кератин с формальдегидом может взаимодействовать по-разному. Формальдегид может реагировать с — S — Н группами, образуя связи — S — СН2 — S — С — NH2 группами боковых цепей и т. д. Например, прочная связь — NH- СН образуется при взаимодействии формальдегида с амидогруппами остатков дикарбоновых кислот и аминогруппами гуанидиновых групп аргинина. В литературе сведения о влиянии разбавленных растворов формальдегида на кожу человека практически отсутствуют. Известно, что если выдержать ухо кролика в формалине (37%-й раствор формальдегида) в течение 30 минут, то оно покраснеет и начнет шелушиться, а впоследствии полностью восстановится (регенерирует). Так как формальдегид в развитых странах используется исключительно в композиции косметических препаратов, не остающихся на коже, вероятность возникновения кожной реакции была рассчитана для случаев использования шампуня, содержащего в качестве консерванта 0,1 % формальдегида. Расчет показал, что нежелательная кожная реакция при применении такого шампуня возникнет только у 1 человека из 75 000. При этом в действительности эта цифра будет ещё менее значимой, поскольку при проведении расчетов не учитывался ряд факторов, не поддающихся точному учету, но неопровержимо снижающих эту вероятность. Во-первых, расчет основывался на базовых данных по содержанию формальдегида непосредственно на коже человека. При мытье волос в непосредственном контакте с кожей находится лишь незначительная часть формальдегида, находящегося в шампуне. Во-вторых, в связи с невысокой стойкостью формальдегида в водных растворах (испарение), его концентрация с течением времени понижается.

Безопасность и токсические свойства

Категория взрывоопасности IIB по ГОСТ Р 51330.11-99, группа взрывоопасности Т2 по ГОСТ Р 51330.5-99. Концентрационные пределы воспламенения 7-73 % об.; Класс опасности I (чрезвычайно опасные вещества) ; температура самовоспламенения — 435 °C. Формальдегид образуется в организме путём окисления метанола. Обладает токсичностью, негативно воздействует на генетический материал, репродуктивные органы, дыхательные пути, глаза, кожный покров. Оказывает сильное действие на центральную нервную систему. Предельно допустимые концентрации (ПДК) формальдегида:

  • ПДКр.з. = 0,5 мг/м³
  • ПДКм.р. = 0,05 мг/м³
  • ПДКс.с. = 0,01 мг/м³
  • ПДКв. = 0,05 мг/л
С 25 мая 2014 г. вступило в силу Постановление Главного государственного санитарного врача Российской Федерации, согласно которому установлены следующие значения ПДКм.р. = 0,05 мг/м³, ПДКс.с. = 0,01 мг/м³ Смертельная доза 40 % водного раствора формальдегида (формалина) составляет 10—50 г.

Воздействие на организм и симптомы хронического отравления

Формальдегид токсичен: приём внутрь 60-90 мл является смертельным. Симптомы отравления: бледность, упадок сил, бессознательное состояние, депрессия, затруднённое дыхание, головная боль, нередко судороги. При остром ингаляционном отравлении: конъюнктивит, острый бронхит, вплоть до отёка лёгких. Постепенно нарастают признаки поражения центральной нервной системы (головокружение, чувство страха, шаткая походка, судороги). При отравлении через рот: ожог слизистых оболочек пищеварительного тракта (жжение, боль в глотке, по ходу пищевода, в желудке, рвота кровавыми массами, понос), геморрагический нефрит, анурия. Возможны отёк гортани, рефлекторная остановка дыхания. Хроническое отравление у работающих с техническим формалином проявляется похудением, диспепсическими симптомами, поражением центральной нервной системы (психическое возбуждение, дрожание, атаксия, расстройства зрения, упорные головные боли, плохой сон). Описаны органические заболевания нервной системы (таламический синдром), расстройства потоотделения, температурная асимметрия. Отмечены случаи бронхиальной астмы. В условиях воздействия паров формалина (например, у рабочих, занятых изготовлением искусственных смол), а также при непосредственном контакте с формалином или его растворами наблюдаются, в особенности в первые дни работы, выраженные дерматиты лица, предплечий и кистей, поражения ногтей (их ломкость, размягчение). Возможны дерматиты и экземы аллергического характера. После перенесённого отравления чувствительность к формалину повышается. Имеются сведения о неблагоприятном влиянии на специфические функции женского организма.

Канцерогенность

Формальдегид внесён в список канцерогенных веществ ГН 1.1.725—98 в разделе «вероятно канцерогенные для человека», при этом доказана его канцерогенность для животных. Международным агентством по исследованию рака официально доказана связь формальдегида, применяемого в производстве смол, пластиков, красок, текстиля, в качестве дезинфицирующего и консервирующего средства, с повышенным риском развития раковых опухолей носоглотки.

Формальдегид - это... Что такое Формальдегид?

Формальдегид (от лат. formīca «муравей») — бесцветный газ с резким запахом, хорошо растворимый в воде, спиртах и полярных растворителях. Ирритант, токсичен.

Формальдегид — первый член гомологического ряда алифатических альдегидов, альдегид муравьиной кислоты.

Физические свойства

Величина Значение
Ст. энергия Гиббса образования ΔG −110 кДж/моль (г)
Ст. энтропия образования S 218,66 Дж/моль·K (г)
Ст. мольная теплоёмкость Cp 35,35 Дж/моль·K (г)
Энтальпия кипения ΔHкип 23,3 кДж/моль

Химические свойства

Из-за низкой электронной плотности на атоме углерода формальдегид легко вступает в реакции даже со слабыми нуклеофилами. Этим, в частности, объясняется тот факт, что в водных растворах формальдегид находится в гидратированной форме.

.

Формальдегид вступает во все реакции, характерные для алифатических альдегидов. В частности, в реакции с нуклеофилами и восстановительными реагентами.

Получение

Основной промышленный метод получения формальдегида — окисление метанола:

Окисление метанола в формальдегид проводится с использованием серебряного катализатора при температуре 650 °C и атмосферном давлении. Это хорошо освоенный технологический процесс, и 80 % формальдегида получается именно по этому методу. Недавно разработан более перспективный способ, основанный на использовании железо-молибденовых катализаторов. При этом реакция проводится при 300 °C. В обоих процессах степень превращения составляет 99 %[1].

Процесс дегидрирования метанола, осуществлённый на цинк-медных катализаторах при 600 °C, пока не получил широкого развития, однако он является очень перспективным, поскольку позволяет получать формальдегид, не содержащий воды.

Существует также промышленный способ получения формальдегида окислением метана:

Процесс проводят при температуре 450 °C и давлении 1—2 МПа, в качестве катализатора применяется фосфат алюминия AlPO4.

Безопасность и токсические свойства

Категория взрывоопасности IIB по ГОСТ Р 51330.11-99, группа взрывоопасности Т2 по ГОСТ Р 51330.5-99. Концентрационные пределы воспламенения 7-73 % об.; температура самовоспламенения — 435 °C.

Формальдегид образуется в организме путём окисления метанола.

Обладает токсичностью, негативно воздействует на генетический материал, репродуктивные органы, дыхательные пути, глаза, кожный покров. Оказывает сильное действие на центральную нервную систему.

Предельно допустимые концентрации (ПДК) формальдегида:[2][3][4]

Смертельная доза 40 % водного раствора формальдегида (формалина) составляет 10—50 г.

Воздействие на организм и симптомы хронического отравления

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.

Формальдегид оказывает отрицательное влияние на органы дыхания, вызывая парез дыхательных путей (остановку дыхания), на кожный покров (ярко выраженные дерматиты, экземы, язвы), нервную систему (энцефалопатии). При длительном воздействии формалин оказывает аллергенное, мутогенное и канцерогенное воздействие. При постоянном воздействии высоких концентраций этого вещества могут возникнуть мутации органов. Оно влияет на почки и печень, а также на центральную нервную систему, вызывая головные боли, усталость и депрессию. Потенциально он может вызывать астму и астматические приступы. Формальдегид накапливается в организме и трудно выводится. [5]

Симптомы отравления: бледность, упадок сил, бессознательное состояние, депрессия, затруднённое дыхание, головная боль, нередко судороги по ночам.

При остром ингаляционном отравлении: конъюнктивит, острый бронхит, вплоть до отёка лёгких. Постепенно нарастают признаки поражения центральной нервной системы (головокружение, чувство страха, шаткая походка, судороги).

При отравлении через рот: ожог слизистых оболочек пищеварительного тракта (жжение, боль в глотке, по ходу пищевода, в желудке, рвота кровавыми массами, понос), геморрагический нефрит, анурия. Возможны отёк гортани, рефлекторная остановка дыхания.

Хроническое отравление у работающих с техническим формалином проявляется похуданием, диспепсическими симптомами, поражением центральной нервной системы (психическое возбуждение, дрожание, атаксия, расстройства зрения, упорные головные боли, плохой сон). Описаны органические заболевания нервной системы (таламический синдром), расстройства потоотделения, температурная асимметрия. Отмечены случаи бронхиальной астмы.

В условиях воздействия паров формалина (например, у рабочих, занятых изготовлением искусственных смол), а также при непосредственном контакте с формалином или его растворами наблюдаются, в особенности в первые дни работы, выраженные дерматиты лица, предплечий и кистей, поражения ногтей (их ломкость, размягчение). Возможны дерматиты и экземы аллергического характера. После перенесённого отравления чувствительность к формалину повышается. Имеются сведения о неблагоприятном влиянии на специфические функции женского организма[6].

Канцерогенность

Формальдегид внесён в список канцерогенных веществ ГН 1.1.725-98 в разделе «вероятно канцерогенные для человека», при этом доказана его канцерогенность для животных[7][8][9].

По официальным данным Международного агентства по исследованию рака, доказана связь формальдегида, применяющегося в производстве смол, пластиков, красок, текстиля, в качестве дезинфицирующего и консервирующего средства, с повышенным риском развития раковых опухолей носоглотки.[10]

Применение

Водный раствор формальдегида — формалин — вызывает денатурацию белков, поэтому он применяется в качестве дубителя в кожевенном производстве и дубления желатина при производстве кинофотоплёнки. Из-за сильного дубящего эффекта формальдегид также является и сильным антисептиком, это свойство формалина используется в медицине, как антисептик (формидрон, Формагель и подобные препараты) и для консервации биологических материалов (создание анатомических и других препаратов).

Основная часть формальдегида идёт на изготовление полимеров-реактопластов (фенолформальдегидные, карбамидформальденидные и меламинформальдегидные смолы), он также широко используется в промышленном органическом синтезе (пентаэритрит, триметилолпропан и т. д.).

При хранении (при температуре ниже 9 С) раствор формальдегида мутнеет, выпадает белый осадок (параформальдегид).

Использование формальдегида в составе косметических средств

Директивой 76/768 ЕЭС допускается применение формальдегида в качестве консерванта в количестве до 0,1% в составе косметических средств, предназначенных для гигиены полости рта, и до 0,2% в прочих косметических препаратах. В фармакологии препараты, содержащие до 0,5% формальдегида, применяются для снижения потливости без каких-либо ограничений, и только при применении мази, содержащей 5% этого вещества, рекомендуется не наносить ее на кожу лица.[11] Запрещается применять для консервации средств в аэрозольной упаковке, спреев. Продукция должна иметь предупреждение «содержит формальдегид», если содержание формальдегида в готовой продукции превышает 0,05%. С точки зрения спектра противомикробной активности, формальдегид проявляет активность в отношении грамположительных, грамотрицательных бактерий, дрожжеподобных и плесневых грибов. В то же время формальдегид и парабены снижают противомикробные свойства в присутствии белков. [12] Рядом с этим установлено улучшение физико-механических свойств волоса после обработки его формалином. Кератин с формальдегидом может взаимодействовать по-разному. Формальдегид может реагировать с — S — Н группами, образуя связи — S — СН2 — S — С — Nh3 группами боковых цепей и т. д. Например, прочная связь — NH- СН образуется при взаимодействии формальдегида с амидогруппами остатков дикарбоновых кислот и аминогруппами гуанидиновых групп аргинина.[13]

В литературе сведения о влиянии разбавленных растворов формальдегида на кожу человека практически отсутствуют. Известно, что если выдержать ухо кролика в формалине (37%-й раствор формальдегида) в течение 30 минут, то оно покраснеет и начнет шелушиться, а впоследствии полностью восстановится (регенерирует).

Так как формальдегид в развитых странах используется исключительно в композиции косметических препаратов, не остающихся на коже, вероятность возникновения кожной реакции была рассчитана для случаев использования шампуня, содержащего в качестве консерванта 0,1% формальдегида. Расчет показал, что нежелательная кожная реакция при применении такого шампуня возникнет только у 1 человека из 75 000. При этом в действительности эта цифра будет еще менее значимой, поскольку при проведении расчетов не учитывался ряд факторов, не поддающихся точному учету, но неопровержимо снижающих эту вероятность. Во-первых, расчет основывался на базовых данных по содержанию формальдегида непосредственно на коже человека. При мытье волос в непосредственном контакте с кожей находится лишь незначительная часть формальдегида, находящегося в шампуне. Во-вторых, в связи с невысокой стойкостью формальдегида в водных растворах (испарение), его концентрация с течением времени понижается.[11]

Примечания

См. также

Ссылки

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.

Материал из Википедии | Формальдегид

Формальдеги́д (от лат. formīca «муравей») — бесцветный газ с резким запахом, хорошо растворимый в воде, спиртах и полярных растворителях. Ирритант, токсичен.

Формальдегид — первый член гомологического ряда алифатических альдегидов, альдегид метанола и муравьиной кислоты.

Физические свойства

Величина Значение
Ст. энергия Гиббса образования ΔG −110 кДж/моль (г)
Ст. энтропия образования S 218,66 Дж/моль·K (г)
Ст. мольная теплоёмкость Cp 35,35 Дж/моль·K (г)
Энтальпия кипения ΔHкип 23,3 кДж/моль

Химические свойства

Из-за низкой электронной плотности на атоме углерода формальдегид легко вступает в реакции даже со слабыминуклеофилами. Этим, в частности, объясняется тот факт, что в водных растворах формальдегид находится в гидратированной форме.

Формальдегид вступает во все реакции, характерные для алифатических альдегидов. В частности, в реакции с нуклеофилами и восстановительными реагентами.

Окисление формальдегида различными реагентами:

Реакция с фенолом с образованием фенолформальдегидных смол[1]:

Получение

Основной промышленный метод получения формальдегида — окисление метанола:

Окисление метанола в формальдегид проводится с использованием серебряного катализатора при температуре 650 °C и атмосферном давлении. Это хорошо освоенный технологический процесс, и 80 % формальдегида получается именно по этому методу. Недавно разработан более перспективный способ, основанный на использовании железо-молибденовых катализаторов. При этом реакция проводится при 300 °C. В обоих процессах степень превращения составляет 99 %[2].

Процесс дегидрирования метанола, осуществлённый на цинк-медных катализаторах при 600 °C, пока не получил широкого развития, однако он является очень перспективным, поскольку позволяет получать формальдегид, не содержащий воды.

Существует также промышленный способ получения формальдегида окислением метана:

Процесс проводят при температуре 450 °C и давлении 1—2 МПа, в качестве катализатора применяется фосфат алюминия AlPO4.

Применение

Водный раствор формальдегида (метандиол), стабилизированный метанолом, — формалин — вызывает денатурацию белков, поэтому он применяется в качестве дубителя в кожевенном производстве и дубления желатина при производстве кинофотоплёнки. Из-за сильного дубящего эффекта формальдегид является также сильным антисептиком, это свойство формалина используется в медицине (формидрон, Формагель и подобные препараты) и дляконсервации биологических материалов (создание анатомических и других препаратов).

Водный раствор формальдегида (метандиол), стабилизированный карбамидом, — КФК — является одним из важнейших источников формальдегида и карбамида в производстве карбамидоформальдегидных, меламинокарбамидоформальдегидных смол и для обработки карбамида против слеживаемости; применяется в деревообрабатывающей и мебельной промышленности для производства фанеры, ДСП и т. д.

Основная часть формальдегида идёт на изготовление полимеров-реактопластов (фенолформальдегидные, карбамидформальдегидные и меламинформальдегидные смолы), он широко используется также в промышленном органическом синтезе (пентаэритрит, триметилолпропан и т. д.).

При хранении (при температуре ниже 9 °С) раствор формальдегида мутнеет, выпадает белый осадок (параформальдегид).

В пищевой промышленности зарегистрирован под кодом E240[3].

Формальдегид в косметике

Директивой 76/768 ЕЭС допускается применение формальдегида в качестве консерванта в количестве до 0,1 % в составе косметических средств, предназначенных для гигиены полости рта, и до 0,2 % в прочих косметических препаратах.

В фармакологии препараты, содержащие до 0,5 % формальдегида, применяются для снижения потливости без каких-либо ограничений, и только при применении мази, содержащей 5 % этого вещества, рекомендуется не наносить её на кожу лица.[4] Запрещается применять для консервации средств в аэрозольной упаковке, спреев. Продукция должна иметь предупреждение «содержит формальдегид», если содержание формальдегида в готовой продукции превышает 0,05 %. С точки зрения спектра противомикробной активности, формальдегид проявляет активность в отношении грамположительных, грамотрицательных бактерий, дрожжеподобных и плесневых грибов. В то же время формальдегид и парабены снижают противомикробные свойства в присутствии белков.[5] Наряду с этим установлено улучшение физико-механических свойств волоса после обработки его формалином. Кератин с формальдегидом может взаимодействовать по-разному. Формальдегид может реагировать с — S — Н группами, образуя связи — S — СН2 — S — С — Nh3 группами боковых цепей и т. д. Например, прочная связь — NH- СН образуется при взаимодействии формальдегида с амидогруппами остатков дикарбоновых кислот и аминогруппами гуанидиновых групп аргинина.[6]

В литературе сведения о влиянии разбавленных растворов формальдегида на кожу человека практически отсутствуют. Известно, что если выдержать ухо кролика в формалине (37%-й раствор формальдегида) в течение 30 минут, то оно покраснеет и начнет шелушиться, а впоследствии полностью восстановится (регенерирует).

Так как формальдегид в развитых странах используется исключительно в композиции косметических препаратов, не остающихся на коже, вероятность возникновения кожной реакции была рассчитана для случаев использования шампуня, содержащего в качестве консерванта 0,1 % формальдегида. Расчет показал, что нежелательная кожная реакция при применении такого шампуня возникнет только у 1 человека из 75 000. При этом в действительности эта цифра будет ещё менее значимой, поскольку при проведении расчетов не учитывался ряд факторов, не поддающихся точному учету, но неопровержимо снижающих эту вероятность. Во-первых, расчет основывался на базовых данных по содержанию формальдегида непосредственно на коже человека. При мытье волос в непосредственном контакте с кожей находится лишь незначительная часть формальдегида, находящегося в шампуне. Во-вторых, в связи с невысокой стойкостью формальдегида в водных растворах (испарение), его концентрация с течением времени понижается.[4]

Безопасность и токсические свойства

Категория взрывоопасности IIB по ГОСТ Р 51330.11-99, группа взрывоопасности Т2 по ГОСТ Р 51330.5-99. Концентрационные пределы воспламенения7-73 % об.; Класс опасности I (чрезвычайно опасные вещества)[7] ; температура самовоспламенения — 435 °C.

Формальдегид образуется в организме путём окисления метанола.

Обладает токсичностью, негативно воздействует на генетический материал, репродуктивные органы, дыхательные пути, глаза, кожный покров. Оказывает сильное действие на центральную нервную систему.

Предельно допустимые концентрации (ПДК) формальдегида:[8][9][10]

  • ПДКр.з. = 0,5 мг/м³
  • ПДКм.р. = 0,05 мг/м³
  • ПДКс.с. = 0,01 мг/м³
  • ПДКв. = 0,05 мг/л

С 25 мая 2014 г. вступило в силу Постановление Главного государственного санитарного врача Российской Федерации, согласно которому установлены следующие значения ПДКм.р. = 0,05 мг/м³, ПДКс.с. = 0,01 мг/м³[7]

Смертельная доза 40 % водного раствора формальдегида (формалина) составляет 10—50 г.

Воздействие на организм 

Формальдегид токсичен: приём внутрь 60-90 мл является смертельным. Симптомы отравления: бледность, упадок сил, бессознательное состояние, депрессия, затруднённое дыхание, головная боль, нередко судороги.

При остром ингаляционном отравлении: конъюнктивит, острый бронхит, вплоть до отёка лёгких. Постепенно нарастают признаки поражения центральной нервной системы (головокружение, чувство страха, шаткая походка, судороги). При отравлении через рот: ожог слизистых оболочек пищеварительного тракта (жжение, боль в глотке, по ходу пищевода, в желудке, рвота кровавыми массами, понос), геморрагический нефрит, анурия. Возможны отёк гортани, рефлекторная остановка дыхания.

Хроническое отравление у работающих с техническим формалином проявляется похудением, диспепсическими симптомами, поражением центральной нервной системы (психическое возбуждение, дрожание, атаксия, расстройства зрения, упорные головные боли, плохой сон). Описаны органические заболевания нервной системы (таламический синдром), расстройства потоотделения, температурная асимметрия. Отмечены случаи бронхиальной астмы.

В условиях воздействия паров формалина (например, у рабочих, занятых изготовлением искусственных смол), а также при непосредственном контакте с формалином или его растворами наблюдаются, в особенности в первые дни работы, выраженные дерматиты лица, предплечий и кистей, поражения ногтей (их ломкость, размягчение). Возможны дерматиты и экземы аллергического характера. После перенесённого отравления чувствительность к формалину повышается. Имеются сведения о неблагоприятном влиянии на специфические функции женского организма[11][12]..

Канцерогенность

Формальдегид внесён в список канцерогенных веществ ГН 1.1.725—98 в разделе «вероятно канцерогенные для человека», при этом доказана его канцерогенность для животных[13][14][15].

Международным агентством по исследованию рака официально доказана связь формальдегида, применяемого в производстве смол, пластиков, красок, текстиля, в качестве дезинфицирующего и консервирующего средства, с повышенным риском развития раковых опухолей носоглотки[16].

Метаналь - это... Что такое Метаналь?

Формальдегид
Общие
Другие названия Муравьиный альдегид
Метаналь
Молекулярная формула CH2O
Молярная масса 30,03 г/моль
Вид газ с острым запахом
Свойства
Плотность 0,9151 г/см³ (при −80 °C)
Растворимость в воде до 37%
Температура плавления −92 °C
Температура кипения −19,2 °C (в др. источниках, −19,3 °C)
Опасность
Описание Обладает токсичными,
канцерогенными свойствами
Оказывает сильное влияние на ЦНС
Опасен для окружающей среды
Категория взрывоопасности II B
Группа взрывоопасности Т2
Концентрационные пределы воспламенения 7-73% об.
Температура самовоспламенения 435 °C
Термодинамические свойства
Ст. энтальпия образования ΔH −115,9 кДж/моль (г)
Ст. энергия Гиббса образования ΔG −110 кДж/моль (г)
Ст. энтропия образования S 218,66 Дж/моль·K (г)
Ст. мольная теплоёмкость Cp 35,35 Дж/моль·K (г)
Энтальпия кипения ΔHкип 23,3 кДж/моль
Если не указано другое, параметры даны для 25 °C, 100 кПа

Формальдегид (от лат. formica — муравей), рекомендуемое международное название метаналь, устаревшее — муравьиный альдегид (CH2=O) — газообразное бесцветное вещество с острым запахом, первый член гомологического ряда алифатических альдегидов.

Токсические свойства

Обладает токсичностью, негативно воздействует на генетический материал, репродуктивные органы, дыхательные пути, глаза, кожный покров. Оказывает сильное действие на центральную нервную систему.

Предельно допустимая концентрация (ПДК) формальдегида в воздухе:

  • ПДКм.р. = 0,5 мг/м³
  • ПДКс.с. = 0,003 мг/м³

Смертельная доза 35 % водного раствора формальдегида (формалина) составляет 10 — 50 г.

Канцерогенность

Формальдегид внесен в список канцерогенных веществ[1][2][3].

Получение

Основной способ получения формальдегида — окисление метанола:

2CH3OH + O2 → 2HCHO + 2H2O

Окисление метанола в формальдегид проводится с использованием серебряного катализатора при температуре 650 °C и атмосферном давлении. Это хорошо освоенный технологический процесс, и 80 % формальдегида получается именно по этому методу. Недавно разработан более перспективный способ, основанный на использовании железо-молибденовых катализаторов. При этом реакция проводится при 300 °C. В обоих процессах степень превращения составляет 99 %.

Процесс дегидрирования метанола, осуществленный на цинк-медных катализаторах при 600 °C, пока не получил широкого развития, однако он является очень перспективным, поскольку позволяет получать формальдегид, не содержащий воды.

Существует также промышленный способ получения формальдегида окислением метана:

CH4 + O2 → HCHO + H2O

Процесс проводят при температуре 450 °C и давлении 1—2 МПа, в качестве катализатора применяется фосфат алюминия AlPO4

Применение

Водный раствор формальдегида — формалин — свёртывает белки, поэтому он применяется для дубления желатина при производстве кинофотоплёнки, для консервации биологических материалов (создание анатомических и других биомоделей), а также как антисептик.

Формальдегид широко применяется при изготовлении пластмасс (таких, как фенопласт и аминопласты), искусственных волокон, из него получают пентаэритрит (сырьё для производства взрывчатых веществ и пластификаторов), триметилопропан. Основная часть формальдегида идет на изготовление древесностружечных материалов, где он используется для получения карбамидной смолы.

Также формальдегид широко используется в качестве консерванта в различных вакцинах, вводимых человеку, последствия чего до сих пор не изучены.

Примечания

  1. "Перечень веществ, продуктов, производственных процессов, бытовых и природных факторов, канцерогенных для человека", Приложение 2 к нормативам ГН 1.1.725-98 от 23 декабря 1998 г. N 32]
  2. Этот же перечень, Лаборатория аналитической экотоксикологии института проблем экологии и эволюции им. А.Н. Северцова РАН
  3. Территориальное управление Роспотребнадзора по Тульской области

См. также

Ссылки

Wikimedia Foundation. 2010.

Формалин — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 июля 2017; проверки требуют 9 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 июля 2017; проверки требуют 9 правок.

Формали́н — водный раствор формальдегида (метаналь), стабилизированный метанолом.

Наиболее распространённой стала форма, содержащая 40 % формальдегида, 8 % метилового спирта и 52 % воды. Источник формальдегида, дезинфицирующее и дезодорирующее средство, жидкость для сохранения анатомических препаратов и дубления кож. Ирритант, токсичен.

Формалин технический марка ФМ ГОСТ 1625-2016 "Формалин технический. Технические условия"[1] — водометанольный раствор формальдегида — бесцветная прозрачная жидкость. При хранении допускается образование мути или белого осадка, растворимого при температуре не выше 40 °С. Такой раствор содержит 37 % формальдегида по массе и имеет плотность около 1,1г/см³, зависящую от количества стабилизирующего метанола. Используется в производстве: синтетических смол, синтетического каучука, поверхностно-активных веществ, многоатомных спиртов, формалей и других метиленовых производных.

Широкое применение находит: в бумажной промышленности для улучшения прочности и качества бумаги; в кожевенной — для дубления кожи; в текстильной — для повышения сопротивляемости изделий к сминанию и усадке; в сельском хозяйстве — для обработки семян и корнеплодов, дезинфекции почвы и животноводческих помещений; в медицине — в качестве дезинфицирующего средства. Упаковка — железнодорожные и автоцистерны с алюминиевыми или нержавеющими котлами, полиэтиленовые бутыли, бидоны; алюминиевые, нержавеющие или стальные с антикоррозионным покрытием бочки вместимостью до 200 дм³.

Транспортируют железнодорожным или автомобильным транспортом в крытых транспортных средствах в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.

Технический формалин хранят в обогреваемых емкостях, изготовленных из материалов, обеспечивающих сохранение качества продукта при температуре 10—25 °С. В упаковке изготовителя — в отапливаемых складских помещениях при температуре 10—25 °С.

Гарантийный срок хранения — три месяца со дня изготовления.

Формалин свёртывает белки и предотвращает их разложение. Поэтому он применяется для дубления желатина при производстве кинофотоплёнки, для сохранения анатомических и зоологических влажных препаратов, используется при бальзамировании, как фиксатор в микроскопии, а также как антисептик. Широко применяется для инактивации бактерий и вирусов при производстве инактивированных вакцин.

Используется для производства фенолформальдегидных олигомеров.

К сожалению, те же свойства формальдегида, которые делают его отличным растворителем, антисептиком и консервантом, могут сделать его опасным для здоровья человека. Он токсичен при попадании в организм человека, может вызвать нарушение зрения, центральной нервной системы, легких, аллергический контактный дерматит у некоторых сенсибилизированных лиц.

За рубежом формальдегид — известный канцероген, он увеличивает риск рака при повторном воздействии. Влияние дыма формальдегида может повысить вероятность развития астмы и привести к временному или постоянному аллергическому проявлению со стороны слизистой оболочки синусов и кожи[2].

Формальдегид. Мини-справочник по химическим веществам (3340 веществ)


Алф. указатель: 1-9 A-Z А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Щ Э Я


Синонимы:

метаналь
муравьиный альдегид

Внешний вид:

бесцветн. газ

Брутто-формула (система Хилла): CH2O

Формула в виде текста: HCHO

Молекулярная масса (в а.е.м.): 30,03

Температура плавления (в °C): -92

Температура кипения (в °C): -19,2

Растворимость (в г/100 г или характеристика):

вода: растворим
диэтиловый эфир: растворим
этанол: растворим

Плотность:

0,8153 (-20°C, г/см3)
0,9151 (-80°C, г/см3)

Давление паров (в мм.рт.ст.):

20 (-79,6°C)

Стандартная энтальпия образования ΔH (298 К, кДж/моль):

-115,9 (г)

Стандартная энергия Гиббса образования ΔG (298 К, кДж/моль):

-110 (г)

Стандартная энтропия образования S (298 К, Дж/моль·K):

218,66 (г)

Стандартная мольная теплоемкость Cp (298 К, Дж/моль·K):

35,35 (г)

Энтальпия кипения ΔHкип (кДж/моль):

23,3

Теплота сгорания Qp(кДж/моль):

561,1

Аналитические

Метод Эгрива. С хромотроповой кислотой в присутствии серной кислоты дает фиолетовую окраску.

Метод Дениже. Формальдегид вытесняет бисульфит из фуксинбисульфитного соединения с появлением сине-фиолетовой окраски красителя. Чувствительность при фотоколориметрировании 0,01 мг формальдегида в 25 мл раствора.

Для количественного определения используют реакции с гидрохлоридом гидроксиламина с титрованием выделяющейся кислоты, с гидросульфитом натрия с иодиметрическим титрованием избытка гидросульфита, с перекисью водорода и щелочью с оттитровыванием избытка щелочи.

Также есть реакции окрашивания: с ацетилацетоном в растворе ацетата аммония (желтая окраска).

В настоящее время наиболее широко используется газохроматографический метод.

Применение:

Водный 40%-ный раствор, называемый формалином, применяется в медицине как дезинфицирующее средство и консервант анатомических препаратов.

Дополнительная информация:

В щелочной среде происходит самоконденсация формальдегида (реакция Бутлерова) по механизму альдольной конденсации с образованием сахаристых веществ; реакция может происходить каталитическим и термическим путем, является автокаталитической. В растворе едкого натра формальдегид гладко реагирует с пероксидом водорода с образованием формиата натрия и водорода.

Реагирует с сульфитом и гидросульфитом натрия с образованием HOCh3SO3Na. Эта реакция используется в количественном анализе формальдегида. Полимерные формы формальдегида этой реакции не дают, поэтому при pH 4-5 возможно оттитровать только мономерный формальдегид.

    Источники информации:

  1. Огородников С.К. "Формальдегид" Л.:Химия 1984
  2. Рабинович В.А., Хавин З.Я. "Краткий химический справочник" Л.: Химия, 1977 стр. 163
  3. Тюкавкина Н.А., Бауков Ю.И. "Биоорганическая химия" М.:Медицина, 1985 стр. 190

Алф. указатель: 1-9 A-Z А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Щ Э Я


Еще по теме:

Формальдегід — Вікіпедія

Формальдегід

Формальдегід

3D-модель молекули формальдегіду

Назва за IUPAC Метаналь
Систематична назва Метаналь
Інші назви Мурашиний альдегід, метилальдегід, метиленгліколь, метиленоксид
Ідентифікатори
Номер CAS 50-00-0
PubChem 712
Номер EINECS 200-001-8
Номер EC 200-001-8
DrugBank DB03843
KEGG D00017
Назва MeSH Formaldehyde
ChEBI CHEBI:16842
RTECS LP8925000
Код ATC QP53AX19
SMILES C=O
InChI 1S/Ch3O/c1-2/h2h3
Номер Бельштейна 1209228
Номер Гмеліна 445
3DMet B00018
Властивості
Молекулярна формула СН2O
Молярна маса 30,03 г/моль
Молекулярна маса 30 а. о. м.
Зовнішній вигляд Безбарвний газ
Запах Різкий, характерний
Густина 0,8153 г/см³ (-20 °C)
Тпл −92 °C
Ткип -19,2 °C
Розчинність (вода) 400 г/дм³
Кислотність (pKa) 13,3
Основність (pKb) 0,7
Дипольний момент 2,33
Структура
Кристалічна структура Плоска тригональна
Термохімія
Ст. ентальпія
утворення ΔfHo298
-115,9 кДж/моль
Фармакологія
Код ATC QP53AX19
DrugBank DB03843
Небезпеки
ЛД50 100 мг/кг
NFPA 704

4

3

0

Температура спалаху 64 °C
Температура самозаймання 430 °C
Вибухові границі 7%—73%
Пов'язані речовини
Пов'язані речовини Метанол, Мурашина кислота
Якщо не зазначено інше, дані наведено для речовин у стандартному стані (за 25 °C, 100 кПа)
Інструкція з використання шаблону
Примітки картки

Формальдегід (метаналь, мурашиний альдегід) (від лат. formica — мурашка) — хімічна речовина з формулою H2CO, найпростіший із альдегідів, перший член гомологічного ряду аліфатичних альдегідів. Чистий мономерний формальдегід при звичайних умовах є безбарвним газом із характерним різким запахом. Досить добре розчинний у протонних розчинниках (вода, спирти). Сполука здатна утворюватися в природних умовах, зокрема при фотохімічному окисненні метану або метанолу, при атмосферному тиску і за відсутності каталізаторів[1].

Мономерний формальдегід має високу реакційну здатність. Його молекули легко реагують навіть одна з одною з утворенням великої кількості лінійних і циклічних полімерів (олігомерів).

Формальдегід широко застосовується у промисловості, зокрема для виробництва полімерних матеріалів, багатоатомних спиртів, ізопрену та інших продуктів. У медицині використовується як дезінфікуючий, консервуючий та дубильний засіб для анатомічних препаратів, а також для виробництва (уротропіну).

Формальдегід — це подразнюючий газ, що викликає дегенеративні процеси в паренхіматозних органах, сенсибілізує шкіру. При роботі з ним для індивідуального захисту слід застосовувати фільтрувальний промисловий протигаз марки А та герметичні захисні окуляри.

Роль у виникненні життя[ред. | ред. код]

Питання про місце формальдегіду у розвитку рослинного світу давно привертає увагу вчених. Легко помітити, що поряд з метаном, метанолом, синильною і мурашиною кислотами формальдегід належить до найпростіших органічних сполук. Різними дослідниками доведена можливість утворення формальдегіду в умовах, близьких до природних. Так, зареєстроване утворення формальдегіду при фотохімічному окисненні метану або метанолу, при атмосферному тиску і за відсутності каталізаторів[1]. Термодинамічно можливе отримання формальдегіду гідрогенізацією оксиду і діоксиду вуглецю. Добре відомо, що гідрогенізація легко відбувається за наявності металів, поширених в земній корі — хрому, міді та інших.

Величезним стрибком від первинної матерії до сполук, що утворюються рослинним шляхом, є, зокрема, реакції утворення багатоатомних альдегідоспиртів і цукрів. Ці реакції також можуть відбуватися під впливом ультрафіолетового випромінювання або при помірному нагріванні.

На думку багатьох фахівців, перехід діоксид вуглецю → формальдегід → цукри може реалізуватися у природних умовах як на Землі, так і в космосі[2]. Формальдегід легко вступає у взаємодію з іншими елементарними сполуками — аміаком, воднем, синильною кислотою, оксидом вуглецю. Всі ці речовини вже давно виявлені в космічному просторі засобами астрофізики, причому існують далекоглядні гіпотези про можливі маршрути утворення на їх основі біологічно активних речовин[3].

Незважаючи на просту будову і хімічний склад молекул формальдегіду модифікації цієї сполуки, що зустрічаються на практиці, відрізняються великим різноманіттям. Це пов'язано насамперед з високою реакційною здатністю мономерного формальдегіду, молекули якого легко реагують одна з одною з утворенням великої кількості лінійних і циклічних полімерів (олігомерів). Всі ці модифікації мають одну і ту ж брутто-формулу (CH2O)n і відрізняються тільки значенням n. Наприклад, при розчиненні формальдегіду у воді у невеликих кількостях утворюються триоксан і тетраоксан, при спонтанній полімеризації газоподібного або рідкого полімерного формальдегіду утворюється твердий, але механічно неміцний поліоксиметилен, при охолодженні водних розчинів формальдегіду виділяється параформ[ru] у вигляді безбарвного або білуватого осаду.

Чистий мономерний формальдегід при звичайних умовах є безбарвним газом із характерним різким запахом. Саме наявності невеликих кількостей мономеру зобов'язані своїм запахом розчини формальдегіду, наприклад формалін, і навіть численні полімерні модифікації, зокрема, параформ[ru].

При контакті з холодною поверхнею або в присутності слідів вологи газоподібний формальдегід утворює твердий білий полімер, однак при низьких парціальних тисках мономерного формальдегіду суміші останнього з іншими речовинами, зокрема з водою і спиртами, в паровій фазі цілком стабільні (гомогенні) в широкому діапазоні тисків і температур.

Формальдегід досить добре розчинний у протонних розчинниках (вода, спирти). Це пов'язано з протіканням в них реакції полімеризації і сольватації.

При високій температурі суміші газоподібного формальдегіду з повітрям або киснем здатні самозайматися. Температура самозаймання в сумішах з повітрям становить 430 °С[4]. У певних умовах горіння переходить у детонацію, причому обидва явища виникають після деякого періоду.

За відсутності кисню формальдегід стійкий при температурі до 350—400 °С. При більш високих температурах відбувається інтенсивний крекінг[5][1]. Розпад формальдегіду різко прискорюється під впливом фотохімічного ефекту. Так, ультрафіолетове випромінювання викликає розпад вже при 100—300 °С[1]:

Ch3O→hνH∙+HCO∙{\displaystyle \mathrm {CH_{2}O{\xrightarrow {h\nu }}H\bullet +HCO\bullet } }
H∙+HCO∙⟶h3+CO{\displaystyle \mathrm {H\bullet +HCO\bullet \longrightarrow H_{2}+CO} }
HCO∙⟶H∙+CO{\displaystyle \mathrm {HCO\bullet \longrightarrow H\bullet +CO} }
HCO∙+Ch3O⟶h3+CO+HCO∙{\displaystyle \mathrm {HCO\bullet +CH_{2}O\longrightarrow H_{2}+CO+HCO\bullet } }
2HCO∙⟶CO+h3{\displaystyle \mathrm {2HCO\bullet \longrightarrow CO+H_{2}} }

При швидкому і глибокому охолодженні чистий газоподібний формальдегід перетворюється в рідину. При атмосферному тиску точка кипіння складає −19,2 °С.

Рідкий формальдегід ще менш стійкий, ніж газоподібний, і досить швидко полімеризується, хоча при -(40—60) °С може зберігатися прозорим кілька діб. При найменшому нагріванні або при попаданні вологи, відбувається дуже швидка полімеризація. Рідкий формальдегід добре змішується з більшістю розчинників, наприклад з толуеном, діетиловим ефіром, хлороформом, етилацетатом і етаналем, причому з останнім утворюються суміші, близькі до ідеальних. При −118 °С рідкий формальдегід твердне. Властивості твердого мономерного формальдегіду вивчені мало, проте добре відомо, що цей продукт оборотно може бути знову перетворений на рідину а, отже, принципово відрізняється від полімеру.

Окисна конверсія метанолу[ред. | ред. код]

Окисна конверсія метанолу в присутності розпеченої міді (сітка, спіралі, трубки) відноситься до найстаріших хімічних процесів. Як сировину довго застосовували метанол лісохімічного походження. У 20-х роках XX століття багатьма дослідниками було показано, що срібло та його сплави є ефективнішими каталізаторами ніж мідь. Надалі срібні каталізатори повністю витіснили мідні. Окисна конверсія метанолу на сріблі проводиться при співвідношенні метанол:повітря вище верхньої межі вибухової концентрації, тобто при великому надлишку метанолу відносно кисню. Утворення формальдегіду відбувається у результаті проходження паралельних реакцій простої і окисної дегідрогенізації метанолу:

Ch4OH⟶Ch3O+h3{\displaystyle \mathrm {CH_{3}OH\longrightarrow CH_{2}O+H_{2}} }
Ch4OH+0,5O2⟶Ch3O+h3O{\displaystyle \mathrm {CH_{3}OH+0,5O_{2}\longrightarrow CH_{2}O+H_{2}O} }

У випадку використання як каталізатора срібла на носії метанол, що містить 20—25 % води, випаровують в струмені повітря[4]. Пароповітряну суміш перегрівають до 110 °С і подають у верхню частину реактора. При пуску системи шар каталізатора в реакторі розігрівається до 250—300 °С за допомогою спеціальних електропідігрівачів, а після «запалювання» шару температура каталізатора підтримується на заданому рівні за рахунок тепла реакції. Пройшовши з високою швидкістю через шар каталізатора, реакційна суміш охолоджується, а газоподібні продукти реакції надходять в абсорбер, де з них добувають формальдегід і непрореагований метанол.

Технологічна схема установок, де як каталізатор застосовується металічне срібло, практично ідентична[6].

Одержання на оксидних каталізаторах[ред. | ред. код]

Як каталізатор в процесі найчастіше використовують суміш оксидів заліза (III) і молібдену (VI) з атомним співвідношенням молібдену до заліза від 1,7 до 2,5. Готують каталізатор співосадженням підходящої солі заліза(III), наприклад хлориду або нітрату[ru], з молібдатом амонію[ru]. При нагріванні і прогартовуванні вихідна суміш перетворюється на твердий розчин оксиду молібдену(VI) у молібдаті заліза[en]. Атоми молібдену знаходяться всередині оксигенних тетраедрів і октаедрів.

Окиснення метанолу на оксидних каталізаторах відбувається за окисно-відновним механізмом:

Ch4OH+2MoO3⟶Ch3O+h3O+Mo2O5{\displaystyle \mathrm {CH_{3}OH+2MoO_{3}\longrightarrow CH_{2}O+H_{2}O+Mo_{2}O_{5}} }
Mo2O5+0,5O2⟶2MoO3{\displaystyle \mathrm {Mo_{2}O_{5}+0,5O_{2}\longrightarrow 2MoO_{3}} }

Деякі вчені вважають, що в окисно-відновному процесі беруть участь також іони заліза[7][8].

Окиснення природного газу і нижчих алканів[ред. | ред. код]

З точки зору доступності і дешевизни сировини, а також простоти технології, отримання формальдегіду прямим окисненням природного газу, що складається, в основному, з метану, киснем повітря заслуговує уваги, оскільки синтез через метанол здійснюється через більшу кількістю етапів. Однак на практиці одержання формальдегіду окисненням метану супроводжується цілою низкою труднощів, найважливіші з яких пов'язані з недостатньою стійкістю формальдегіду в умовах реакції. Відомо, що некаталізоване (неініційоване) окиснення метану з помітною швидкістю відбувається при температурі вище 600 °С (під вакуумом вище 540 °С[9]). Водночас термічний розклад формальдегіду спостерігається вже при 400 °С[1]. Крім того, утворений формальдегід у присутності кисню легко піддається подальшому окисненню. Через ці причини на практиці окиснення метану, навіть у присутності ініціаторів проводять при малих значеннях конверсії, причому і в цих умовах селективність утворення формальдегіду невисока.

Окиснення вуглеводнів С2—С4 у порівнянні з окисненням метану має багато спільного хоча і характеризується деякими специфічними особливостями. Як і у випадку метану, процес проводять в області вище верхньої межі вибухових концентрацій вуглеводнів. При окисненні вуглеводнів С3—С5 в рідкій фазі одержуються переважно карбонові кислоти, а формальдегід практично не утворюється.

Особливості будови молекули формальдегіду

Функції і активність формальдегіду в хімічних перетвореннях випливають із будови його молекули. Якщо поглянути на її структуру то можна відзначити такі особливості:

  • висока поляризованість, навіть в ізольованому стані, пов'язана з відсутністю замісників, що сприяють делокалізації зарядів;
  • простота будови і компактність молекули. Багато перетворень, характерних для складних органічних сполук, для формальдегіду нетипові. Однак для нього практично не існує просторових перешкод.

Перетворення у водних і спиртових розчинах[ред. | ред. код]

Відомо, що в протонних полярних розчинниках (вода, спирти) формальдегід знаходиться в хімічно зв'язаному стані, причому в результаті взаємодії з розчинником утворюється велика родина асоціатів, що знаходяться у рівновазі один з одним.

Розчиняючись у воді, мономерний формальдегід гідратується з утворенням метиленгліколю.

Ch3O+h3O⇆Ch3(OH)2+ΔH{\displaystyle \mathrm {CH_{2}O+H_{2}O\leftrightarrows CH_{2}(OH)_{2}+\Delta H} }

Швидкість реакції вельми велика, а її продукт — метиленгліколь нестійкий.

Першим актом взаємодії формальдегіду зі спиртами є утворення аналогічного до метиленгліколю моносольвату — геміформалю відповідного спирту.

Ch3O+ROH⇆Ch3(OR)OH{\displaystyle \mathrm {CH_{2}O+ROH\leftrightarrows CH_{2}(OR)OH} }

Геміформаль може реагувати далі в двох напрямках, приєднуючи або ще одну молекулу формальдегіду, або спирту.

Реакція Канніццаро[ред. | ред. код]

До числа найцікавіших інтраперетворень формальдегіду відноситься реакція диспропорціонування з утворенням метанолу та мурашиної кислоти

2Ch3O+h3O⟶HCOOH+Ch4OH{\displaystyle \mathrm {2CH_{2}O+H_{2}O\longrightarrow HCOOH+CH_{3}OH} }

або

2Ch3(OH)2⟶HCOOH+Ch4OH+h3O{\displaystyle \mathrm {2CH_{2}(OH)_{2}\longrightarrow HCOOH+CH_{3}OH+H_{2}O} }

Уперше диспропорціонування альдегідів у присутності їдких лугів вивчав Канніццаро в 1853 році. Пізніше було виявлено, що дана реакція відбувається також під впливом кислот, солей і оксидів, а також взагалі без каталізаторів. Є спостереження, що реакція прискорюється також під дією іонізуючого або світлового випромінювання[1].

З практичної точки зору велике значення має так звана перехресна реакція Канніццаро, тобто взаємодія формальдегіду з молекулою іншого альдегіду (або кетону). Останній у цьому випадку ніби гідрується (відновлюється) до відповідного спирту, а формальдегід перетворюється на мурашину кислоту. На практиці (при отриманні багатоатомних спиртів) перехресна реакція проводиться в лужному середовищі, так що її продуктами є спирт і форміат[ru]лужного металу, наприклад:

HCHO+RCHO+NaOH⟶RCh3OH+HCOONa{\displaystyle \mathrm {HCHO+RCHO+NaOH\longrightarrow RCH_{2}OH+HCOONa} }

Реакції відновлення[ред. | ред. код]

Окрім реакції Канніццаро, відновлювальна здатність формальдегіду проявляється і в інших реакціях, наприклад при дії на оксиди і гідроксиди багатьох металів у лужному середовищі. У цих умовах срібло, золото, мідь, ртуть, бісмут і нікель відновлюються до металів[1]

Ag2O+Ch3O⟶2Ag+HCOOH{\displaystyle \mathrm {Ag_{2}O+CH_{2}O\longrightarrow 2Ag+HCOOH} }

Одержання уротропіну[ред. | ред. код]

Формальдегід енергійно реагує з аміаком і деякими його похідними з утворенням гексаметилентетраміну (уротропіну):

6Ch3O+4Nh4⟶C6h22N4+6h3O{\displaystyle \mathrm {6CH_{2}O+4NH_{3}\longrightarrow C_{6}H_{12}N_{4}+6H_{2}O} }

Реакція відбувається цілком нормально уже при кімнатній температурі, причому реагенти можуть застосовуватися як у вигляді розчинів, так і в пароподібному стані, в лужному або кислому середовищі. На цій реакції оснований прийом ліквідації наслідків розгерметизації апаратури формалінових виробництв (розлив, загазованість і т. д.) обробкою аміаком або аміачною водою.

Реакція Манніха[ред. | ред. код]

Реакція Манніха — це тримолекулярна взаємодія формальдегіду одночасно з основним і кислим реагентами[10]. Як основний зазвичай застосовують диметиламін[ru], рідше — аміак або метиламін, а як кислий — сполуки, що містять активні протони: спирти, кетони, ціановодень, алкени і т. д.[1][11]

Реакція Бутлерова[ред. | ред. код]

За певних умов молекули формальдегіду здатні взаємодіяти одна з одною з утворенням системи зв'язків -C-C-, тобто з нарощуванням вуглецевого ланцюга. Як правило, це призводить до утворення багатоатомних спиртів, кетонів та альдегідів. Хоча в молекулі формальдегіду відсутній α-вуглецевий атом і звична для багатьох інших альдегідів інтрамолекулярна конденсація в даному випадку неможлива, механізм утворення перерахованих продуктів подібний до альдольної конденсації. Розглянута реакція може відбуватися як каталітичним, так і чисто термічним шляхом.

Вперше утворення цукроподібних продуктів спостерігав Бутлеров, додаючи до киплячого водного розчину формальдегіду барієвий або кальцієвий луг. Після випаровування води у вакуумі і екстрагування залишку спиртом, він отримав сиропоподібну рідину, яку назвали метилінітом (за аналогією з маннітом}})[12].

2Ch3O→OH−HOCh3CHO{\displaystyle \mathrm {2CH_{2}O{\xrightarrow {OH^{-}}}HOCH_{2}CHO} }

Ця реакція є досить повільною. Проте вона продовжується аж до утворення 1,1-диметилол-1,3-гідрокси-2-пропанону.

Каталітичною дією в реакції Бутлерова володіють і гідроксиди деяких нелужних металів. Так, при нагріванні розчину формальдегіду з оксидом свинцю можна отримати формозу (суміш синтетичних цукрів) з виходом 70 %[1]. Аналогічний ефект здійснює додавання дрібно меленого олова, свинцю і цинку.

Одержання циклічних формалей[ред. | ред. код]

При взаємодії формальдегіду з гліколями і багатоатомними спиртами утворюються циклічні формалі. Ці речовини, як правило, є добрими розчинниками. Однак найбільший інтерес циклічні формалі представляють як кополімерні добавки до поліформальдегіду, у зв'язку з чим ці речовини виробляють у промислових масштабах[13].

Діоксолан[ru] (глікольформаль) утворюються при дії формальдегіду на етиленгліколь при нагріванні в кислому середовищі:

Вихідний формальдегід можна застосовувати як у вигляді водного розчину, так і у вигляді параформу[ru]. Як каталізатори рекомендується застосовувати кислоти Льюїса (наприклад, ZnCl2, FeCl3).

Окиснення[ред. | ред. код]

У газоподібному стані при підвищеній температурі формальдегід легко окиснюється чистим киснем або повітрям.

У водному розчині при температурі до 100 °С швидкість взаємодії формальдегіду з киснем надзвичайно мала. Однак у присутності деяких металів, наприклад губчастої платини, формальдегід вже при кімнатній температурі швидко перетворюється на діоксид вуглецю.

Напрямок реакції окиснення формальдегіду в розчині змінюється при застосуванні таких окислювальних агентів, як озон, пероксид водню, йод і т. д. Дією озону в м'яких умовах формальдегід можна перетворити на мурашину кислоту. Взаємодія формальдегіду з пероксидом водню прискорюються в присутності лугів і кислот. У лужному середовищі формальдегід гладко реагує з пероксидом водню з утворенням форміату натрію[ru] і водню:

2Ch3O+h3O2+2NaOH⟶2HCOONa+2h3O+h3

Формалин |

Формалин

Синонимы названия: формальдегида водный раствор, метаналь, муравьиный альдегид

Product name: formaldehyde water solution, formalin, formol, methanal, methyl aldehyde, methylene oxide

ГОСТ: 1625-89

Химическая формула: HCHO

CAS: 50-00-0

Структурная формула:

Спецификация

Наименование показателей Норма по ГОСТ В.С.
1. Внешний вид бесцветная, прозрачная жидкость
2. Массовая доля формальдегида, %, не менее 37,2 +/- 0,3
3. Массовая доля метилового спирта, %, не более 4,0 — 8,0
4. Массовая доля кислот в пересчете на муравьиную, %, не более 0,02
5. Массовая доля остатка после прокаливания, %, не более 0,008
6. Массовая доля железа, %, не более 0,0001

Применение

  • для производства полимеров и смол (продукты поликонденсации с фенолом, мочевиной, меламином)
  • как один из компонентов, для производства бутадиена
  • для получения бета-пропиолактона
  • при проявлении негативных цветных пленок в процессе C-41
  • как интермедиат в производстве пентаэритрита, метилендифенилдиизоцианата, гексамина
  • при производстве ряда фармацевтических препаратов и красителей
  • для дубления кож, как антисептик, дезинфицирующее и дезодорирующее средство
Упаковка:
п/э канистры, металлические бочки, еврокубы
Хранение:
на открытых и закрытых площадках, в плотно закрытой таре.
Класс опасности:
3 класс.

Химические свойства альдегидов и кетонов

Карбонильные соединения – это органические вещества, молекулы которых содержат карбонильную группу:

Карбонильные соединения делятся на альдегиды и кетоны. Общая формула карбонильных соединений: СnH2nO.

Строение, изомерия и гомологический ряд альдегидов и кетонов

Химические свойства альдегидов и кетонов

Способы получения альдегидов и кетонов

Альдегидами называются органические соединения, содержащие карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода. 

Структурная формула альдегидов:

Кетонами называются соединения, в молекуле которых карбонильная группа связана с двумя углеводородными радикалами

Структурная формула кетонов:

 

1. Реакции присоединения

В молекулах карбонильных соединений присутствует двойная связь С=О, поэтому для карбонильных соединений характерны реакции присоединения по двойной связи. Присоединение к альдегидам протекает легче, чем к кетонам.

1.1. Гидрирование

Альдегиды при взаимодействии с водородом в присутствии катализатора (например, металлического никеля) образуют первичные спирты, кетоны — вторичные:

1.2. Присоединение воды

При гидратации формальдегида образуется малоустойчивое вещество, называемое гидрат. Оно существует только при низкой температуре.

1.3. Присоединение спиртов

При присоединении спиртов к альдегидам образуются вещества, которые называются полуацетали.

В качестве катализаторов процесса используют кислоты или основания.

Полуацетали существует только при низкой температуре.

Полуацеталиэто соединения, в которых атом углерода связан с гидроксильной и алкоксильной (-OR) группами.

Полуацеталь может взаимодействовать с еще одной молекулой спирта в присутствии кислоты. При этом происходит замещение полуацетального гидроксила на алкоксильную группу OR’ и образованию ацеталя:

 

1.4. Присоединение циановодородной (синильной) кислоты

Карбонильные соединения присоединяют синильную кислоту HCN. При этом образуется гидроксинитрил (циангидрин):

 

2. Окисление альдегидов и кетонов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении альдегиды превращаются в карбоновые кислоты.

Альдегид → карбоновая кислота

 

Метаналь окисляется сначала в муравьиную кислоту, затем в углекислый газ:

Формальдегид→ муравьиная кислота→ углекислый газ

 

Вторичные спирты окисляются в кетоны:

вторичные спирты → кетоны

Типичные окислители — гидроксид меди (II), перманганат калия KMnO4, K2Cr2O7, аммиачный раствор оксида серебра (I).

Кетоны окисляются только при действии сильных окислителей и нагревании.

 

2.1. Окисление гидроксидом меди (II)

Происходит при нагревании альдегидов со свежеосажденным гидроксидом меди, при этом образуется красно-кирпичный осадок оксида меди (I) Cu2O. Это — одна из качественных реакций на альдегиды.

Видеоопыт окисления муравьиного альдегида гидроксидом меди (II) можно посмотреть здесь.

Например, муравьиный альдегид окисляется гидроксидом меди (II)

HCHO + Cu(OH)2 = Cu + HCOOH + H2O

Чаще в этой реакции образуется оксид меди (I):

HCHO + 2Cu(OH)2 = Cu2O + HCOOH + 2H2O

 

2.2. Окисление аммиачным раствором оксида серебра

Альдегиды окисляются аммиачным раствором оксида серебра (реакция «серебряного зеркала»).

Поскольку раствор содержит избыток аммиака, продуктом окисления альдегида будет соль аммония карбоновой кислоты.

Например, при окислении муравьиного альдегида аммиачным раствором оксида серебра (I) образуется карбонат аммония

Например, при окислении уксусного альдегида аммиачным раствором оксида серебра образуется ацетат аммония

 

Образование осадка серебра при взаимодействии с аммиачным раствором оксида серебра — качественная реакция на альдегиды. 

Упрощенный вариант реакции: 

2.3. Жесткое окисление

При окислении под действием перманганатов или соединений хрома (VI) альдегиды окисляются до карбоновых кислот или до солей карбоновых кислот (в нейтральной среде). Муравьиный альдегид окисляется до углекислого газа или до солей угольной кислоты (в нейтральной среде).

Например, при окислении уксусного альдегида перманганатом калия в серной кислоте образуется уксусная кислота

Кетоны окисляются только в очень жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов.

Реакция протекает с  разрывом С–С-связей (соседних с карбонильной группой) и с образованием смеси карбоновых кислот с меньшей молекулярной массой или СО2.

Карбонильное соединение/ ОкислительKMnO4, кислая средаKMnO4, H2O, t
Метаналь СН2ОCO2K2CO3
Альдегид R-СНОR-COOHR-COOK
КетонR-COOH/ СО2R-COOK/ K2СО3

 

 

2.4. Горение карбонильных соединений

При горении карбонильных соединений образуются углекислый газ и вода и выделяется большое количество теплоты.

CnH2nО + 3n/2O2 → nCO2 + nH2O + Q

Например, уравнение сгорания метаналя:

CH2O + O2 = CO2 + H2O

 

3. Замещение водорода у атома углерода, соседнего с карбонильной группой 

Карбонильные соединения вступают в реакцию с галогенами, в результате которой получается хлорзамещенный (у ближайшего к карбонильной группе атома углерода) альдегид или кетон.

Например, при хлорировании уксусного альдегида образуется хлорпроизводное этаналя

Полученное из ацетальдегида вещество называется хлораль. Продукт присоединения воды к хлоралю (хлоральгидрат) устойчив и используется как лекарство.

 

4. Конденсация с фенолами 

Формальдегид может взаимодействовать с фенолом. Катализатором процесса выступают кислоты или основания:

 

Дальнейшее взаимодействие с другими молекулами формальдегида и фенола приводит к образованию фенолоформальдегидных смол и воды:

Фенол и формальдегид вступают в реакцию поликонденсации.

Поликонденсация — это процесс соединения молекул в длинную цепь (полимер) с образованием побочных продуктов с низкой молекулярной массой (вода или др.). 

5. Полимеризация альдегидов 

Полимеризация характерна в основном для легких альдегидов. Для альдегидов характерна линейная и циклическая полимеризация.

Например, в растворе формалина (40 %-ного водного раствора формальдегида) образуется белый осадок полимера формальдегида, который называется полиформальдегид или параформ:

Поделиться ссылкой:


Смотрите также

Серозометра: Лечение Народными Средствами

Серозометра: причины возникновения, симптомы и лечение Патологическое скопление в полости матки жидкости — серозометра, довольно серьезный симптом. Промедление… Подробнее...
Палец

Щелкающий Палец: Лечение Народными Средствами

Какие существуют способы избавления от щелкающих суставов Когда палец (или даже несколько) заклинивает во время сгибания или раздается непривычное щелканье, то… Подробнее...
Простатит

Затрудненное Мочеиспускание У Мужчин: Лечение Народными Средствами

Из-за чего возникает затрудненное мочеиспускание у мужчин Проблемы с мочеиспусканием у мужчин встречаются достаточно часто, причем даже в молодом возрасте, но… Подробнее...